Abstract

We report on an investigation of water-processable triple-stacked hole-selective layers for solution-processable organic semiconducting devices using a simple horizontal-dip (H-dip) coating technique. Homogeneous layers were successfully deposited via H-dip-coating using aqueous solutions of graphene oxide (GO), molybdenum oxide (MoO3), and poly(ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS). The use of the triple-stacked GO/MoO3/PEDOT:PSS layers as hole-injecting layers (HILs) in solution-processable organic light-emitting diodes (OLEDs) resulted in a considerable improvement of device performance in terms of brightness (maximum brightness: 47,000 cd/m2) as well as efficiency (peak efficiency: 31.5 cd/A), exceeding those of an OLED with a conventional single PEDOT:PSS HIL. Furthermore, polymer solar cells (PSCs) with these triple-stacked layers used as hole-collecting layers (HCLs) showed a considerable improvement in power conversion efficiency (6.62%), which was also higher than that (5.65%) obtained using the single PEDOT:PSS HCL. These results clearly indicate the benefits of using triple-stacked GO/MoO3/PEDOT:PSS layers, which provide better hole-injection/collection, electron-blocking, and improved stability for high performance solution-processable OLEDs and PSCs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved impedance characteristics of all-water-processable triple-stacked hole-selective layers in solution-processed OLEDs

Yoon Ho Huh, O. Eun Kwon, Byoungchoo Park, Seulki Ji, Sun Sook Lee, Jongsun Lim, and Ki-Seok An
Opt. Express 24(10) A846-A855 (2016)

Near infrared organic photodetector utilizing a double electron blocking layer

Shafidah Shafian, Heewon Hwang, and Kyungkon Kim
Opt. Express 24(22) 25308-25316 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
    [Crossref]
  3. S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
    [Crossref]
  4. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
    [Crossref]
  5. C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
    [Crossref]
  6. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
    [Crossref]
  7. J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
    [Crossref]
  8. F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
    [Crossref]
  9. D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
    [Crossref]
  10. B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
    [Crossref]
  11. S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
    [Crossref]
  12. T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
    [Crossref]
  13. B. Park and M.-Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009).
    [Crossref] [PubMed]
  14. A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
    [Crossref] [PubMed]
  15. J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
    [Crossref]
  16. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
    [Crossref] [PubMed]
  17. S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
    [Crossref]
  18. H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
    [Crossref]
  19. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
    [Crossref]
  20. M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
    [Crossref]
  21. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
    [Crossref]
  22. J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
    [Crossref] [PubMed]
  23. Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
    [Crossref]
  24. J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
    [Crossref] [PubMed]
  25. H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
    [Crossref]
  26. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
    [Crossref] [PubMed]
  27. S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaic prepared by a synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
    [Crossref] [PubMed]
  28. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
    [Crossref]
  29. J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
    [Crossref]
  30. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
    [Crossref]
  31. S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
    [Crossref]
  32. K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).
  33. W. S. Hummers and R. E. Offeman, “Preparation of graphene oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  34. J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
    [Crossref]
  35. Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
    [Crossref] [PubMed]
  36. X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
    [Crossref]
  37. C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
    [Crossref]
  38. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
    [Crossref]
  39. L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17(1–2), 42–54 (1942).
  40. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref] [PubMed]
  41. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
    [Crossref]
  42. V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys. 97(5), 054504 (2005).
    [Crossref]
  43. S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
    [Crossref]
  44. S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
    [Crossref]
  45. S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
    [Crossref]

2014 (1)

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

2013 (6)

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
[Crossref]

2012 (6)

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
[Crossref]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaic prepared by a synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref] [PubMed]

Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
[Crossref]

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

2011 (2)

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
[Crossref] [PubMed]

2010 (3)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

2009 (6)

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

B. Park and M.-Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009).
[Crossref] [PubMed]

S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
[Crossref]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

2008 (1)

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

2007 (2)

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

2006 (2)

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

2005 (1)

V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys. 97(5), 054504 (2005).
[Crossref]

2004 (2)

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

2002 (3)

C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
[Crossref]

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

2001 (1)

C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
[Crossref]

2000 (3)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[Crossref]

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

1999 (1)

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

1998 (1)

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphene oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

1942 (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17(1–2), 42–54 (1942).

Adachi, C.

C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
[Crossref]

C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
[Crossref]

Amb, C. M.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

An, K.-S.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Baldo, M. A.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Beaupré, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Bergqvist, J.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Birnstock, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Bradley, D. D. C.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Braun, S.

S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
[Crossref]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Brütting, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Burrows, P. E.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

Cao, Y.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Chang, C. C.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Chen, C.-C.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Chen, G.-H.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Chen, S.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
[Crossref]

Chen, S.-Z.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Chen, W.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Chen, Y.-L.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Chiang, C.-I.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Cho, G. S.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Cho, S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Choi, E. H.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Choi, K. S.

Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
[Crossref]

Choong, V.-E.

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Choulis, S. A.

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Chow, H. F.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Chu, C. W.

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

Coates, N.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Contryman, A. W.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Dai, L.

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Dam, H. F.

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

de Gans, B.-J.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

de Jong, M. P.

M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[Crossref]

de Voigt, M. J. A.

M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[Crossref]

Dong, W.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Dou, L.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Duineveld, P. C.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Durstock, M.

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Edman, L.

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

Elschner, A.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

Emery, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Fahlman, M.

S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
[Crossref]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Forrest, S. R.

C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
[Crossref]

C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
[Crossref]

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Friend, R. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Galbrecht, F.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Gao, J.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Gao, Y.

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Gao, Z. Q.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Guo, T.-F.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

Han, M.-Y.

Hartel, M. J.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

He, G.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

He, Z.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Heeger, A. J.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Higuchi, H.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

Hofmann, M.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Hong, B. H.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Horng, S.-F.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

Huang, F.

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

Huang, J.

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

Huh, Y. H.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphene oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Hung, H.-W.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Jabbour, G. E.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

Jaiser, F.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Jen, A. K.-Y.

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

Jeon, H. G.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Jeong, H.-G.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Jiang, X.

S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
[Crossref]

Jou, J.-H.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Jou, Y.-C.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Kato, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Kim, D.-Y.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kim, J.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kim, K. W.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Kim, S. W.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Kim, S. Y.

Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
[Crossref]

Kim, S.-S.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kong, X.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Koyama, T.

T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
[Crossref]

Krebs, F. C.

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

Krummacher, B.

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Ku, B.-C.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Kwong, R.

C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
[Crossref]

Lai, T.-H.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

Lamansky, S.

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

Landau, L. D.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17(1–2), 42–54 (1942).

Lau, W. M.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Leclerc, M.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Lee, C.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Lee, K.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Lee, K.-C.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

Lee, S. S.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Leo, K.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Levich, V. G.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17(1–2), 42–54 (1942).

Li, C.-J.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Li, G.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

Li, J.-Y.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Lim, J.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Lin, Y.-P.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Lin, Y.-X.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Liu, C.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Liu, J.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Liu, M.-C.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Lövenich, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

Low, K. H.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Luo, Y.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Ma, H.

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Manders, J. R.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Mathai, M. K.

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Mattevi, C.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Meng, F.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Meng, H.-F.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

Meyer, J.

K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).

Miller, S.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Mkhoyan, K. A.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Moon, J. S.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Moriarty, T.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Moses, D.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Murase, S.

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaic prepared by a synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref] [PubMed]

Na, S.-I.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Nagatsuka, T.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

Naka, S.

T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
[Crossref]

Neher, D.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Noh, Y.-J.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Nowy, S.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

O’Brien, D. F.

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphene oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Oh, S. S.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Ohya, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Okada, H.

T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
[Crossref]

Ouyang, J.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

Pardo, D. A.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

Park, B.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

B. Park and M.-Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009).
[Crossref] [PubMed]

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Park, J. H.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Park, S. H.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Park, Y.

Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
[Crossref]

Peng, S.-H.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Peyghambarian, N.

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

Pfeiffer, M.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Poplavskyy, D.

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Pudzich, R.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Qin, J.

Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
[Crossref] [PubMed]

Ren, W.

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

Reynolds, J. R.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

Riedl, T.

K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Roy, A.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Ruan, S.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Salaneck, W. R.

S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
[Crossref]

Salbeck, J.

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Sandström, A.

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

Scherf, U.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Schubert, U. S.

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Seo, Y. H.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Shao, S.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Shen, L.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Shen, S.-M.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Shi, S.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Shoustikov, A.

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Shrotriya, V.

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys. 97(5), 054504 (2005).
[Crossref]

Sibley, S.

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Silcox, J.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

So, F.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
[Crossref]

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

Stewart, D. A.

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Stiller, B.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Su, S.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Sun, Y.-S.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tao, C.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Tao, Y.

Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
[Crossref] [PubMed]

Thompson, M. E.

C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
[Crossref]

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Tsang, S.-W.

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

Tseng, S.-R.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

van IJzendoorn, L. J.

M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[Crossref]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Veit, C.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Wagner, J.

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

Wang, C.-W.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Wang, W.-B.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Weber, J. A.

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

Wei, M.-K.

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Wong, K. W.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Wong, K. Y.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Wu, H.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Würfel, U.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Xie, G.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Xie, Z.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Xu, M.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Xue, Y.

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Yang, C.

Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
[Crossref] [PubMed]

Yang, X. H.

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Yang, Y.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaic prepared by a synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref] [PubMed]

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys. 97(5), 054504 (2005).
[Crossref]

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

Yeo, J.-S.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Yeung, W. L.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Yip, H. L.

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

Yip, H.-L.

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

Yoon, S. C.

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

Yoshimura, K.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

Yoshioka, M.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

You, J.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

You, Y.

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Yu, D.

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

Yun, J.-M.

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

Yun, S. H.

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

Zhang, F.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Zhang, X.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

Zhong, C.

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

Zilberberg, K.

K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).

Acta Physicochim. URSS (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17(1–2), 42–54 (1942).

Adv. Energy Mater. (1)

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In situ formation of MoO3 in PEDOT:PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojuction solar cells,” Adv. Energy Mater. 3(3), 349–355 (2013).
[Crossref]

Adv. Funct. Mater. (3)

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transporting layer in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23(23), 2993–3001 (2013).
[Crossref]

H. Ma, H.-L. Yip, F. Huang, and A. K.-Y. Jen, “Interface engineering for organic electronics,” Adv. Funct. Mater. 20(9), 1371–1388 (2010).
[Crossref]

X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht, and U. Scherf, “Efficient polymer electrophosphorescent devices with interfacial layers,” Adv. Funct. Mater. 16(16), 2156–2162 (2006).
[Crossref]

Adv. Mater. (7)

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process,” Adv. Mater. 14(12), 915–918 (2002).
[Crossref]

D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[Crossref]

B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymer: State of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

S. Braun, W. R. Salaneck, and M. Fahlman, “Energy-level alignment at organic/metal and organic/organic interfaces,” Adv. Mater. 21(14–15), 1450–1472 (2009).
[Crossref]

J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. 23(42), 4923–4928 (2011).
[Crossref] [PubMed]

J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, “Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells,” Adv. Mater. 24(17), 2228–2233 (2012).
[Crossref] [PubMed]

S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaic prepared by a synthesis method,” Adv. Mater. 24(18), 2459–2462 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (9)

G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient inverted polymer solar cells,” Appl. Phys. Lett. 88(25), 253503 (2006).
[Crossref]

M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Appl. Phys. Lett. 77(14), 2255–2257 (2000).
[Crossref]

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, “Blocking reactions between indium-tin-oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Appl. Phys. Lett. 80(15), 2788–2790 (2002).
[Crossref]

J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett. 90(15), 153508 (2007).
[Crossref]

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[Crossref]

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[Crossref]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diode,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett. 75(1), 4–6 (1999).
[Crossref]

G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett. 85(17), 3911–3913 (2004).
[Crossref]

Chem. Soc. Rev. (1)

Y. Tao, C. Yang, and J. Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev. 40(5), 2943–2970 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Adachi, M. E. Thompson, and S. R. Forrest, “Architectures for efficient electrophosphorescent organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 8(2), 372–377 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphene oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. Appl. Phys. (3)

F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V.-E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102(9), 091101 (2007).
[Crossref]

V. Shrotriya and Y. Yang, “Capacitance-voltage characterization of polymer light-emitting diodes,” J. Appl. Phys. 97(5), 054504 (2005).
[Crossref]

S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting, “Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes,” J. Appl. Phys. 107(5), 054501 (2010).
[Crossref]

J. Mater. Chem. (1)

K. Zilberberg, J. Meyer, and T. Riedl, “Solution processed metal-oxides for organic electronic devices,” J. Mater. Chem. C  1(32), 4796–4815 (2013).

J. Mater. Chem. C (2)

H. G. Jeon, Y. H. Huh, S. H. Yun, K. W. Kim, S. S. Lee, J. Lim, K.-S. An, and B. Park, “Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices,” J. Mater. Chem. C 2(14), 2622–2634 (2014).
[Crossref]

J.-H. Jou, S.-H. Peng, C.-I. Chiang, Y.-L. Chen, Y.-X. Lin, Y.-C. Jou, G.-H. Chen, C.-J. Li, W.-B. Wang, S.-M. Shen, S.-Z. Chen, M.-K. Wei, Y.-S. Sun, H.-W. Hung, M.-C. Liu, Y.-P. Lin, J.-Y. Li, and C.-W. Wang, “Highly efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer,” J. Mater. Chem. C 1(8), 1680–1686 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Koyama, S. Naka, and H. Okada, “Investigation of solution-processed organic light-emitting diode fabrication on patterned line structure using bar-coating method,” Jpn. J. Appl. Phys. 51(11R), 112102 (2012).
[Crossref]

Nano Lett. (1)

K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, “Atomic and electronic structure of graphene-oxide,” Nano Lett. 9(3), 1058–1063 (2009).
[Crossref] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun. 4, 1446 (2013).
[Crossref] [PubMed]

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, “Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating,” Nat. Commun. 3, 1002 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics 6(9), 593–595 (2012).
[Crossref]

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3(5), 297–302 (2009).
[Crossref]

Nature (2)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

S. R. Forrest, M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, and M. E. Thompson, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395(6698), 151–154 (1998).
[Crossref]

Opt. Express (1)

Org. Electron. (2)

C. Adachi, R. Kwong, and S. R. Forrest, “Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film,” Org. Electron. 2(1), 37–43 (2001).
[Crossref]

S. Chen, X. Jiang, and F. So, “Hole injection polymer effect on degradation of organic light-emitting diodes,” Org. Electron. 14(10), 2518–2522 (2013).
[Crossref]

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000).
[Crossref]

Phys. Status Solidi A (1)

Y. Park, K. S. Choi, and S. Y. Kim, “Graphene oxide/PEDOT:PSS and reduced graphene oxide/PEDOT:PSS hole extraction layer in organic photovoltaic cells,” Phys. Status Solidi A 209(7), 1363–1368 (2012).
[Crossref]

Proc. SPIE (1)

S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, “Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation,” Proc. SPIE 7415, 74150G (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Coated film thickness data for the sol-gel processed MoO3 layers as a function of carrying speed for the two gap heights in the H-dip-coating process. Solid curves show the fit to the Landau-Levich equation. The inset shows a schematic illustration of the H-dip-coating process with gap height h0 and coating speed U. (b) Optical transmission spectra of the various films fabricated using the H-dip-coating process. The inset shows the chemical structure of ammonium heptamolybdate (MoO3 precursor).
Fig. 2
Fig. 2 (a) Device configurations of the solution-processable OLEDs studied (upper) together with the relevant energy level diagrams (lower). (b) Current density-voltage (J-V), (c) Luminance-voltage (L-V), and (d) Luminance efficiency-luminance (LE-L) characteristics of the OLEDs with various HILs. The insets in (c) and (d) show the normalized EL spectra of the investigated OLEDs and a photograph of a sample OLED with GO/MoO3/PEDOT:PSS HILs operating at 12.0 V, respectively.
Fig. 3
Fig. 3 Representative Raman spectra of the G and D peaks for the GO films in the stacked layers of GO/MoO3 (a) and MoO3/GO (b) on the ITO-coated glass surfaces fabricated by H-dip-coating, showing the highest (black curves) and lowest (blue curves) intensities of the G and D peaks in the observed regions (100 μm × 100 μm). The inset figures show 2D Raman maps of the G peak for the GO films, in which the different colors indicate different Raman intensities, as shown in the charge-coupled device counts (CCD cts) keys.
Fig. 4
Fig. 4 Representative J–E curves of hole-only (a) and electron-only (b) devices containing different HILs fabricated by H-dip-coating processes.
Fig. 5
Fig. 5 Current–voltage (J-V) plots for hole-only devices with a single PEDOT:PSS HIL (a) and triple-stacked GO/MoO3/PEDOT:PSS HILs (b) after different numbers of aging cycles.
Fig. 6
Fig. 6 (a) Changes in the hole current flows and (b) the normalized changes in the hole current flows of hole-only devices with different HILs as a function of the number of aging cycles.
Fig. 7
Fig. 7 (a) The optical absorption spectra of the PCDTBT:PCBM70 BHJ PV layers with water-processable HCLs. The inset shows device structure of the investigated PSCs. (b) The reflection spectra of the investigated BHJ PSCs with water-processable HCLs. The inset shows chemical structures of PCDTBT and PCBM70.
Fig. 8
Fig. 8 Current density-voltage (J-V) curves of the PCDTBT:PCBM70 BHJ PSCs with water-processable HCLs in the dark (a) and under illumination (b). The inset shows the IPCE spectra of the PSCs studied.
Fig. 9
Fig. 9 Photograph showing the operating green OLEDs (at 12 V, left) and PCDTBT:PCBM70 BHJ PSCs (right) with the water-processed triple-stacked GO/MoO3/PEDOT:PSS hole-selective layers on ITO anodes coated on glass substrates (5 cm × 5 cm), demonstrating the ease of fabrication of the large-area solution-processable organic semiconducting devices.

Tables (2)

Tables Icon

Table 1 Summary of the device performance of the solution-processed OLEDs with various different hole-injecting layers (HILs)

Tables Icon

Table 2 Summary of the device performance for the PCDTBT:PCBM70 PSCs with various hole-collecting layers (HCLs)

Metrics