Abstract

Recent research in the field of photovoltaics has shown that polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy. In this paper, we propose a new method for the generation of three-dimensional nanofibers coated on polymer substrate induced by femtosecond laser pulses. In this new method, a thin layer of polymer is irradiated by megahertz femtosecond laser pulses under ambient conditions, and a thin fibrous layer is generated on top of the polymer substrate. This method is single step; no additional materials are added, and the layers of the three-dimensional (3D) polymer nanofibrous structures are grown on top of the substrate after laser irradiation. Light spectroscopy results show significant enhancement of light absorption in the generated 3D nanofibrous layers of polymer. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofiber cells by optimizing the laser parameters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan
Opt. Express 22(S1) A120-A131 (2014)

Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications

Jeronimo Buencuerpo, Luis E. Munioz-Camuniez, Maria L. Dotor, and Pablo A. Postigo
Opt. Express 20(S4) A452-A464 (2012)

Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells

Mukul Agrawal and Peter Peumans
Opt. Express 16(8) 5385-5396 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
    [Crossref]
  2. K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
    [Crossref]
  3. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [Crossref]
  4. T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
    [Crossref]
  5. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  6. A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
    [Crossref]
  7. A. Kiani, K. Venkatakrishnan, and B. Tan, “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell,” Opt. Express 22(101Suppl 1), A120–A131 (2014).
    [PubMed]
  8. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
    [Crossref]
  9. A. D'Amore, A. K. Haghi, and G. Efremovich Zaikov, Bioscience Methodologies in Physical Chemistry: An Engineering and Molecular Approach, (CRC Press 2013).
  10. S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
    [Crossref]
  11. S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
    [Crossref] [PubMed]
  12. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
    [Crossref]
  13. H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
    [Crossref]
  14. Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
    [Crossref]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [Crossref]
  16. A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
    [Crossref]
  17. H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
    [Crossref]
  18. K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
    [Crossref]
  19. L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).
  20. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
    [Crossref]
  21. B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
    [Crossref] [PubMed]
  22. A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
    [Crossref] [PubMed]
  23. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
    [Crossref]
  24. A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express 19(11), 10834–10842 (2011).
    [Crossref] [PubMed]
  25. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
    [Crossref]
  26. I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
    [Crossref]
  27. S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
    [Crossref]
  28. J. E. Mark, Polymer Data Handbook. Vol. 27 (New York: Oxford university press, 2009).
  29. E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4), 91–243 (2011).
    [Crossref]
  30. A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
    [Crossref]

2014 (2)

A. Kiani, K. Venkatakrishnan, and B. Tan, “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell,” Opt. Express 22(101Suppl 1), A120–A131 (2014).
[PubMed]

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

2013 (2)

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
[Crossref]

2012 (1)

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

2011 (4)

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
[Crossref]

A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express 19(11), 10834–10842 (2011).
[Crossref] [PubMed]

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4), 91–243 (2011).
[Crossref]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[Crossref]

2009 (7)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[Crossref]

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[Crossref]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
[Crossref] [PubMed]

2008 (2)

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

2007 (2)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref] [PubMed]

2004 (1)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

2003 (1)

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[Crossref]

2001 (2)

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

1999 (1)

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
[Crossref]

1998 (2)

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[Crossref]

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

1997 (1)

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
[Crossref]

Aernouts, T.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

Aleksandrov, T.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Ballif, C.

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

Blakers, A. W.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Catchpole, K. R.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

Chen, S. A.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Cheng, Y. S.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Cho, S. H.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Choi, B. D.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Dobrzañski, L. A.

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Drygaa, A.

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Fukui, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4), 91–243 (2011).
[Crossref]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
[Crossref]

Genoe, J.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

Girotto, C.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

Green, M. A.

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[Crossref]

Günes, S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref] [PubMed]

Gupta, M. C.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
[Crossref]

Hardin, B. E.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Haug, F.-J.

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Inomata, Y.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
[Crossref]

Iyengar, V. V.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
[Crossref]

Jabbour, G. E.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

Jhuo, H. J.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Kiani, A.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell,” Opt. Express 22(101Suppl 1), A120–A131 (2014).
[PubMed]

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express 19(11), 10834–10842 (2011).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[Crossref]

Kim, D.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Kim, K. R.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Kim, S. Y.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Kim, T. H.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Kwon, S.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Lee, J. S.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Li, Y. L.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Liao, S. H.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Lim, H. J.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Lipiñski, M.

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Loster, M.

A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
[Crossref]

Mayer, A. C.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

McCann, M. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

McGehee, M. D.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Molian, P. A.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

Nayak, B. K.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
[Crossref]

Neugebauer, H.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref] [PubMed]

Panchatsharam, S.

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[Crossref]

Panek, P.

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Park, H.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Park, H. A.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Peyghambarian, N.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

Polman, A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Poortmans, J.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

Radspinner, R.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
[Crossref]

Rowell, M. W.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Sariciftci, N. S.

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref] [PubMed]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Scully, S. R.

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Shaheen, S. E.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

Shirasawa, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
[Crossref]

Shirk, M. D.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

Söderström, T.

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

Stuke, M.

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[Crossref]

Tan, B.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell,” Opt. Express 22(101Suppl 1), A120–A131 (2014).
[PubMed]

A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
[Crossref]

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express 19(11), 10834–10842 (2011).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[Crossref]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
[Crossref] [PubMed]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[Crossref]

Tavangar, A.

A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
[Crossref]

Terrazzoni-Daudrix, V.

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Venkatakrishnan, K.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell,” Opt. Express 22(101Suppl 1), A120–A131 (2014).
[PubMed]

A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
[Crossref]

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, B. Tan, and V. Venkataramanan, “Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses,” Opt. Express 19(11), 10834–10842 (2011).
[Crossref] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[Crossref]

B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009).
[Crossref] [PubMed]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[Crossref]

Venkataramanan, V.

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Waraich, P. S.

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

Weber, K. J.

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yeh, P. N.

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

Yi, J.

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Yoon, S.

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Zaniewski, A. M.

A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[Crossref]

Zergioti, I.

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[Crossref]

Zettl, A.

A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[Crossref]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Ziêba, P.

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Appl. Phys. Lett. (4)

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[Crossref]

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[Crossref]

A. M. Zaniewski, M. Loster, and A. Zettl, “A one-step process for localized surface texturing and conductivity enhancement in organic solar cells,” Appl. Phys. Lett. 95(10), 103308 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[Crossref]

Appl. Surf. Sci. (1)

K. R. Kim, T. H. Kim, H. A. Park, S. Y. Kim, S. H. Cho, J. Yi, and B. D. Choi, “UV laser direct texturing for high efficiency multicrystalline silicon solar cell,” Appl. Surf. Sci. 264, 404–409 (2013).
[Crossref]

Archives of Materials Science (1)

L. A. Dobrzañski, A. Drygaa, P. Panek, M. Lipiñski, and P. Ziêba, “Development of the laser method of multicrystalline silicon surface texturization,” Archives of Materials Science 6, 6 (2009).

Chem. Rev. (1)

S. Günes, H. Neugebauer, and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (4)

T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys. 103(11), 114509 (2008).
[Crossref]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[Crossref]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4221 (1999).
[Crossref]

A. Tavangar, B. Tan, and K. Venkatakrishnan, “Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air,” J. Appl. Phys. 113(2), 023102 (2013).
[Crossref]

J. Chil. Chem. Soc. (1)

H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, “Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Hetero‐junction Polymer Solar Cells,” J. Chil. Chem. Soc. 61(1), 115–126 (2014).
[Crossref]

J. Laser Appl. (1)

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10(1), 18–28 (1998).
[Crossref]

Mater. Today (1)

A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10(11), 28–33 (2007).
[Crossref]

Nano Lett. (1)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

A. Kiani, P. S. Waraich, K. Venkatakrishnan, and B. Tan, “Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses,” Nanoscale Res. Lett. 7(1), 518 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rep. (1)

E. G. Gamaly, “The physics of ultra-short laser interaction with solids at non-relativistic intensities,” Phys. Rep. 508(4), 91–243 (2011).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[Crossref]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011).
[Crossref]

Sol. Energy (2)

A. Kiani, K. Venkatakrishnan, and B. Tan, “Enhancement of the optical absorption of thin-film of amorphorized silicon for photovoltaic energy conversion,” Sol. Energy 85(9), 1817–1823 (2011).
[Crossref]

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy 74(3), 181–192 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates,” Sol. Energy Mater. Sol. Cells 68(2), 173–215 (2001).
[Crossref]

H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells 93(10), 1773–1778 (2009).
[Crossref]

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1), 237–242 (1997).
[Crossref]

Other (2)

A. D'Amore, A. K. Haghi, and G. Efremovich Zaikov, Bioscience Methodologies in Physical Chemistry: An Engineering and Molecular Approach, (CRC Press 2013).

J. E. Mark, Polymer Data Handbook. Vol. 27 (New York: Oxford university press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM Images of the irradiated areas at a) 4 W, b) 7 w and c) 10 W.
Fig. 2
Fig. 2 EDX results of the irradiated areas at a) 4 W, b) 7 W and c) 10 W.
Fig. 3
Fig. 3 Detailed SEM Images of the irradiated areas at a) 4 W, b) 7 w and c) 10 W.
Fig. 4
Fig. 4 TEM Image of the generated nanofibers at 214 fs, 26 MHz and 10 W.
Fig. 5
Fig. 5 EDX result of the generated nanofibers with laser power of 10 W.
Fig. 6
Fig. 6 Computed temperature rise on the substrate at a) 4 W, b) 7 w and c) 10 W.
Fig. 7
Fig. 7 Results of light spectroscopy of the synthesized structures at various laser power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T t =a 2 T x 2
T(x,t)=k a π 0 t p I a (τ) tτ exp{ x 2 2a(tτ) }dτ
I a = 4P(1R) π d 2 t p f
( T max ) n =(1+α+ α 2 + α 3 +...+ α n1 ) T m =[ (1 α n )/(1α) ] T m ; ( T min ) n =α ( T max ) n ;
T n = 1 n( t p + t pp ) 0 n( t p + t pp ) T(0,t)dt =2α (1 2 3 α) T m (1+ α 2 )(1α) ( 1+ α n α n(1α) )

Metrics