Abstract

Near-field thermal radiation may play significant role in the enhancement of energy harvesting and radiative cooling by new types of designer materials, which in turn can be crucial in the development of future devices. In this work, we present a case study to explore near- to far-field thermal emission and radiative flux from a thin polar SiC film coated by different size and shape nanoparticles. The same geometry with nano-particles is also considered as a layered medium, which is analyzed using Effective Medium Theory (EMT). A significant enhancement of emission, particularly at the far infrared, is observed when nanoparticles are placed on the surface of a SiC film with certain periodicities, which shows potential use of these structures for radiative cooling applications. Yet, these enhancements are not observed when the EMT approach is adapted, which is questioned for its accuracy of predicting near-to-far field transition regime of radiation transfer from corrugated surfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-field thermal radiation transfer by mesoporous metamaterials

Azadeh Didari and M. Pinar Mengüç
Opt. Express 23(19) A1253-A1258 (2015)

Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes

Alok Ghanekar, Laura Lin, Junwei Su, Hongwei Sun, and Yi Zheng
Opt. Express 23(19) A1129-A1139 (2015)

Near-field thermal upconversion and energy transfer through a Kerr medium

Chinmay Khandekar and Alejandro W. Rodriguez
Opt. Express 25(19) 23164-23180 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
    [Crossref]
  2. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
    [PubMed]
  3. D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
    [Crossref]
  4. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
    [Crossref]
  5. G. Chen, Nanoscale Energy Transport and Conversion (Oxford University, 2005).
  6. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  7. J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer (CRC Press, 2011).
  8. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
    [Crossref]
  9. B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
    [Crossref] [PubMed]
  10. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [PubMed]
  11. L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
    [Crossref]
  12. R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
    [Crossref] [PubMed]
  13. K. Sasihithlu and A. Narayanaswamy, “Near-field radiative transfer between two unequal sized spheres with large size disparities,” Opt. Express 22(12), 14473–14492 (2014).
    [Crossref] [PubMed]
  14. A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quant. Spectrosc. Radiat. 146, 214–226 (2014).
    [Crossref]
  15. A. Didari and M. P. Mengüç, “Near-Field Thermal Emission between Corrugated Surfaces separated by Nano-Gaps,” J. Quant. Spectrosc. Radiat. 158, 43–51 (2015).
    [Crossref]
  16. A. Didari and M. P. Mengüç, Effect of noparticles to near-field thermal emission calculations by FDTD method,” in Proceedings of 2nd International workshop on Nano and Micro Thermal radiation (Nanorad’14, 2014), 60–62.
  17. A. Didari and M. P. Mengüç, Near-field thermal emission between corrugated surfaces separated by nano-gaps,” in Proceedings of Nanoscale and Microscale Heat Transfer IV Conference (Eurotherm 103, 2014), pp. 28–31.

2015 (1)

A. Didari and M. P. Mengüç, “Near-Field Thermal Emission between Corrugated Surfaces separated by Nano-Gaps,” J. Quant. Spectrosc. Radiat. 158, 43–51 (2015).
[Crossref]

2014 (3)

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

K. Sasihithlu and A. Narayanaswamy, “Near-field radiative transfer between two unequal sized spheres with large size disparities,” Opt. Express 22(12), 14473–14492 (2014).
[Crossref] [PubMed]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quant. Spectrosc. Radiat. 146, 214–226 (2014).
[Crossref]

2013 (3)

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

2012 (1)

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

2010 (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

2009 (1)

C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

2002 (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Carminati, R.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

Didari, A.

A. Didari and M. P. Mengüç, “Near-Field Thermal Emission between Corrugated Surfaces separated by Nano-Gaps,” J. Quant. Spectrosc. Radiat. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quant. Spectrosc. Radiat. 146, 214–226 (2014).
[Crossref]

Fan, S.

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Fu, C.

C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

Greffet, J.-J.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

Guha, B.

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Joulain, K.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

Lipson, M.

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Maslovski, S.

Mengüç, M. P.

A. Didari and M. P. Mengüç, “Near-Field Thermal Emission between Corrugated Surfaces separated by Nano-Gaps,” J. Quant. Spectrosc. Radiat. 158, 43–51 (2015).
[Crossref]

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quant. Spectrosc. Radiat. 146, 214–226 (2014).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

Narayanaswamy, A.

Nefedov, I.

Otey, C.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Poitras, C. B.

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

Polder, D.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Raman, A.

L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Sasihithlu, K.

Simovski, C.

St-Gelais, R.

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

Tretyakov, S.

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Zhang, Z. M.

C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

Zhu, L.

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Appl. Phys. Lett. (1)

L. Zhu, A. Raman, and S. Fan, “Color-preserving day-time radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Front. Energy Power Eng. China (1)

C. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009).
[Crossref]

J. Appl. Phys. (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Local density of electromagnetic states within a nanometric gap formed between thin films supporting surface phonon polaritons,” J. Appl. Phys. 107(3), 034313 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. (2)

A. Didari and M. P. Mengüç, “Analysis of near-field radiation transfer within nano-gaps using FDTD method,” J. Quant. Spectrosc. Radiat. 146, 214–226 (2014).
[Crossref]

A. Didari and M. P. Mengüç, “Near-Field Thermal Emission between Corrugated Surfaces separated by Nano-Gaps,” J. Quant. Spectrosc. Radiat. 158, 43–51 (2015).
[Crossref]

Microscale Thermophys.Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys.Eng. 6(3), 209–222 (2002).
[Crossref]

Nano Lett. (3)

B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson, “Near-field radiative cooling of nanostructures,” Nano Lett. 12(9), 4546–4550 (2012).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated nanostructures,” Nano Lett. 14(12), 6971–6975 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Other (5)

A. Didari and M. P. Mengüç, Effect of noparticles to near-field thermal emission calculations by FDTD method,” in Proceedings of 2nd International workshop on Nano and Micro Thermal radiation (Nanorad’14, 2014), 60–62.

A. Didari and M. P. Mengüç, Near-field thermal emission between corrugated surfaces separated by nano-gaps,” in Proceedings of Nanoscale and Microscale Heat Transfer IV Conference (Eurotherm 103, 2014), pp. 28–31.

G. Chen, Nanoscale Energy Transport and Conversion (Oxford University, 2005).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 FDTD computational domain with ABCs.
Fig. 2
Fig. 2 (a) Perfectly flat thin SiC film. (b) Spherical NPs placed on the emitting film.
Fig. 3
Fig. 3 Comparison of results for LDOS; spectral profiles for a single flat film and those in the presence of NPs.
Fig. 4
Fig. 4 Comparison of results for LDOS for a single film, in the presence of NPs of diameter of 350 nm.
Fig. 5
Fig. 5 Magnified LDOS profile results over near visible spectrum.
Fig. 6
Fig. 6 Comparison of results found for LDOS for a single film, in the presence of rectangles of w = h = 200nm and with EMT.
Fig. 7
Fig. 7 Comparison of results for radiative flux vs. wavelength for a single film, in the presence of rectangles with w = h = 200 nm and those based on the EMT. The inset shows an enlarged version of these comparisons for wavelength range of 0.4-0.7 µm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D x t = H y z , D z t = H y x
D x ( ω )= ε 0 ε r ( ω ) E x ( ω ) , D z ( ω )= ε 0 ε r ( ω ) E z ( ω )
H y t = 1 μ 0 ( E z x E x z )
( x 1 v t ) E z =0, ( z 1 v t ) E x =0
E z 1,k+1/2 n+1 = E z 2,k+1/2 n +  vΔtΔx vΔt+Δx ( E z 2,k+1/2 n+1 E z 1,k+1/2 n )
E x i+1/2,1 n+1 = E x i+1/2,2 n +  vΔtΔz vΔt+Δz ( E x i+1/2,2 n+1 E x i+1/2,1 n )

Metrics