Abstract

Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array causes a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it is shown that this broadband enhancement is due to single particle resonances that give rise to light-trapping in the infrared spectral range and to collective resonances that ensure an efficient in-coupling of light in the ultraviolet-blue spectral range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells

Constantin Simovski, Dmitry Morits, Pavel Voroshilov, Michael Guzhva, Pavel Belov, and Yuri Kivshar
Opt. Express 21(S4) A714-A725 (2013)

Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

Aravind Krishnan, Snehal Das, Siva Rama Krishna, and Mohammed Zafar Ali Khan
Opt. Express 22(S3) A800-A811 (2014)

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

Seweryn Morawiec, Manuel J. Mendes, Sergej A. Filonovich, Tiago Mateus, Salvatore Mirabella, Hugo Águas, Isabel Ferreira, Francesca Simone, Elvira Fortunato, Rodrigo Martins, Francesco Priolo, and Isodiana Crupi
Opt. Express 22(S4) A1059-A1070 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref] [PubMed]
  2. P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
    [Crossref] [PubMed]
  3. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
    [Crossref]
  4. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
    [Crossref]
  5. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
    [Crossref]
  6. C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
    [Crossref]
  7. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
    [Crossref] [PubMed]
  8. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
    [Crossref] [PubMed]
  9. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
    [Crossref]
  10. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
    [Crossref]
  11. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
    [Crossref]
  12. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
    [Crossref]
  13. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19, A303–A311 (2011).
    [Crossref]
  14. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
    [Crossref]
  15. C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
    [Crossref] [PubMed]
  16. http://www.ajaint.com/systems.htm .
  17. http://www.labsphere.com
  18. http://www.labsphere.com/uploads/pb13058DifRefStds.pdf
  19. Since the reflectance is measured relative to a spectralon SRS99 white standard, the reflectance values used in the derivation of absorptance were corrected using a standard Spectralon response curve [18].
  20. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  21. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [Crossref] [PubMed]
  22. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).
  23. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21, 4250–4262 (2013).
    [Crossref] [PubMed]
  24. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
    [Crossref] [PubMed]
  25. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
    [Crossref]
  26. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref] [PubMed]
  27. B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).
  28. B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
    [Crossref]
  29. B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
    [Crossref]
  30. www.lumerical.com
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. D. R. Lide, Handbook of Chemistry and Physics, 84. (CRC, 2003/2004).
  33. M. A. Green and M. J. Keeves, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics: Res. and Appl. 3, 189–192 (1995).
    [Crossref]
  34. H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
    [Crossref]
  35. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
    [Crossref] [PubMed]
  36. V. Ferry, M. A. Verschurren, H. B. T. Li, E. verhagen, R. J. Walters, R. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
    [Crossref] [PubMed]
  37. E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
    [Crossref]
  38. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
    [Crossref]
  39. “Bonding silicon-on-insulator to glass wafers for integrated bio-electronic circuits,” Appl. Phys. Lett.85, 2370–2372 (2004).
    [Crossref]
  40. M. J. Madou, The MEMS Handbook (CRC, 2002).

2014 (1)

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

2013 (4)

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21, 4250–4262 (2013).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
[Crossref]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

2012 (2)

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

2011 (6)

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19, A303–A311 (2011).
[Crossref]

2010 (6)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref] [PubMed]

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

V. Ferry, M. A. Verschurren, H. B. T. Li, E. verhagen, R. J. Walters, R. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

2009 (2)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

2008 (3)

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

2006 (1)

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

2005 (1)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

2004 (1)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

1999 (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

1995 (1)

M. A. Green and M. J. Keeves, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics: Res. and Appl. 3, 189–192 (1995).
[Crossref]

1963 (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref] [PubMed]

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Atwater, H. A.

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Auguié, B.

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

Bendaa, X. M.

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]

Charrire, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Daif, O. E.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Drezer, R. A.

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Ekins-Daukes, N. J.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Escarr, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Ferry, V.

Fu, K.

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

Garca de Abajo, F. J.

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

Giannini, V.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Gómez Rivas, J.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21, 4250–4262 (2013).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

M. A. Green and M. J. Keeves, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics: Res. and Appl. 3, 189–192 (1995).
[Crossref]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

Hansen, J. L.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Hylton, N. P.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Jain, S.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

Johansen, B.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
[Crossref]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Jung, J.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

Keeves, M. J.

M. A. Green and M. J. Keeves, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics: Res. and Appl. 3, 189–192 (1995).
[Crossref]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref] [PubMed]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Kristensen, P. K.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Larsen, A. N.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
[Crossref]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Lazarides, A.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

Li, H. B. T.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics, 84. (CRC, 2003/2004).

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

Lozano, G.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Madou, M. J.

M. J. Madou, The MEMS Handbook (CRC, 2002).

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Maier, S. A.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

Massa, E.

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

Murai, S.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pedersen, K.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Pedersen, T. G.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Pirrucio, G.

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19, A303–A311 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

V. Ferry, M. A. Verschurren, H. B. T. Li, E. verhagen, R. J. Walters, R. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]

Rodriguez, S. R. K.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirrucio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting waveguides,” Opt. Express 21, 4250–4262 (2013).
[Crossref] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Schatz, G. C.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref] [PubMed]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Schropp, R. I.

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

Søndergaard, T.

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Spinelli, P.

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon mediated light coupling into a substrate,” Opt. Express 19, A303–A311 (2011).
[Crossref]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

Uhrenfeldt, C.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
[Crossref]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Ulriksen, H. U.

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

van Lare, C.

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Verhagen, E.

Verschurren, M. A.

Verschuuren, M. A.

Villesen, T. F.

C. Uhrenfeldt, T. F. Villesen, B. Johansen, J. Jung, T. G. Pedersen, and A. N. Larsen, “Diffractive coupling and plasmon-enhanced photocurrent generation in silicon,” Opt. Express 21, A774–A785 (2013).
[Crossref] [PubMed]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

Walters, R. J.

Wang, H.

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Zou, S.

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref] [PubMed]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarr, F.-J. Haug, M. Charrire, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can peridodic beat random,” ACS Nano 6, 2790–2797 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

E. Massa, V. Giannini, N. P. Hylton, N. J. Ekins-Daukes, S. Jain, O. E. Daif, and S. A. Maier, “Diffractive interference design using front and rear surface metal and dielectric nanoparticle arrays for photocurrent enhancement in thin crystalline silicon solar cells,” ACS Photonics 1, 871–877 (2014).
[Crossref]

Appl. Phys. B. (1)

H. Wang, K. Fu, R. A. Drezer, and N. J. Halas, “Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness,” Appl. Phys. B. 84, 191–195 (2006).
[Crossref]

Appl. Phys. Lett. (4)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Assymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[Crossref]

J. Appl. Phys. (2)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2009).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two-dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[Crossref] [PubMed]

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticlce arrays,” J. Chem. Phys. 123, 221103 (2005).
[Crossref]

J. Clu. Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clu. Sci. 10, 295–317 (1999).
[Crossref]

Nano Lett. (1)

P. Spinelli, M. Hebbink, R. de Waele, L. Black, and A. Polman, “Optical impedance matching using coupled plasmonic particle arrays,” Nano Lett. 11, 1760–1765 (2011).
[Crossref] [PubMed]

Nanotechnology (2)

T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, and A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology,  23, 085202 (2012).
[Crossref] [PubMed]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21, 235201 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Opt. Express (5)

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[Crossref]

Phys. Rev. B (1)

B. Johansen, C. Uhrenfeldt, T. G. Pedersen, H. U. Ulriksen, P. K. Kristensen, J. Jung, T. Søndergaard, K. Pedersen, and A. N. Larsen, “Optical transmission through two-dimensional arrays of β-Sn nanoparticles,” Phys. Rev. B 84, 113405 (2011).
[Crossref]

Phys. Rev. Lett. (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

B. Auguié, X. M. Bendaa, W. L. Barnes, and F. J. Garca de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. Lett. 82, 155447 (2010).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X 1, 021019 (2011).

Plasmonics (2)

B. Johansen, C. Uhrenfeldt, and A. N. Larsen, “Plasmonic properties of β-Sn nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 153–158 (2013).
[Crossref]

C. Uhrenfeldt, T. F. Villesen, B. Johansen, T. G. Pedersen, and A. N. Larsen, “Tuning plasmon resonances for light coupling into silicon: a “rule of thumb” for experimental design,” Plasmonics 8, 79–84 (2013).
[Crossref]

Prog. Photovoltaics: Res. and Appl. (1)

M. A. Green and M. J. Keeves, “Optical properties of intrinsic silicon at 300K,” Prog. Photovoltaics: Res. and Appl. 3, 189–192 (1995).
[Crossref]

Other (9)

“Bonding silicon-on-insulator to glass wafers for integrated bio-electronic circuits,” Appl. Phys. Lett.85, 2370–2372 (2004).
[Crossref]

M. J. Madou, The MEMS Handbook (CRC, 2002).

www.lumerical.com

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

D. R. Lide, Handbook of Chemistry and Physics, 84. (CRC, 2003/2004).

http://www.ajaint.com/systems.htm .

http://www.labsphere.com

http://www.labsphere.com/uploads/pb13058DifRefStds.pdf

Since the reflectance is measured relative to a spectralon SRS99 white standard, the reflectance values used in the derivation of absorptance were corrected using a standard Spectralon response curve [18].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the solar cell structure. (b) Picture of the thin film test solar cell (diameter ca. 4 mm) where the nanoparticle array can be seen as a very dark area. The AFM profile and SEM image of the nanoparticle array can be seen in (c) and (d) respectively. The pitch of the square array is 380 nm.
Fig. 2
Fig. 2 Measured reflectance (a), transmittance (b) and absorptance (c) for the reference sample (grey lines) and the NP array sample in s-polarization (blue lines) and in p-polarization (red lines).
Fig. 3
Fig. 3 External quantum efficiency (EQE) measured in s-polarization (a) and in p-polarization (b). The grey lines refer to the reference solar cell while the blue lines and red lines correspond to measurements on the nanoparticle array made at an angle of incidence of 0° and 8° respectively. The relative EQE with respect to the reference sample is shown in (c) and (d) for s- and p-polarization respectively.
Fig. 4
Fig. 4 Simulated normal incidence reflectance (a), transmittance (b), and absorptance (c) spectra for the solar cell with nanoparticles for different array pitch values.
Fig. 5
Fig. 5 (a) Comparison of the measured s-polarized absorptance (blue lines) and simulated normal incidence absorptance (red lines) for the nanoparticle sample as well as the experimental (black line) and simulated (grey line) absorptance for the reference solar cell. (b) Relative gain in the measured (blue line) and simulated (red line) absorptance shown in (a). (c) Comparison of the s-polarized normal incidence external quantum efficiency measurements with the simulated normal incidence absorptance in the 1160 nm Si layer for the nanoparticle sample (blue and red lines) and the reference sample (black and grey lines). (d) Comparison of the relative gain in the measured EQE and the simulated Si layer absorptance shown in (c).
Fig. 6
Fig. 6 (a) Calculated normal incidence scattering efficiency (full lines) and absorption efficiencies (dashed lines) for the experimental nanoparticle geometry (blue), for a nanoparticle with a larger basediameter of 220 nm (red) and for a nanoparticle with a height of 110 nm (green), all other structural dimensions being similar. (b) The simulated normal incidence absorptance for nanoparticle solar cells using the nanoparticle geometries in (a) (blue,red,green) as well as for the reference cell (grey).
Fig. 7
Fig. 7 (a) Schematic illustrating the different fabrication steps to obtain a thin mono crystalline Si solar cell on a glass substrate starting with (a) a SOI substrate on which (b) a DS is grown by MBE. (c) This structure is bonded to a borosilicate glass substrate and (d) the whole structure is flipped up-side down. (e)(f)(g) Chemical wet-etching is used to remove the SOI wafer: KOH is used to remove the thick Si substrate, HF is used to remove the SiO2 layer, and ethylene diamine pyrocathecol is used to remove the top Si inactive layer. (h) The thermally evaporated top Al electrodes are (i) masked with wax to isolate the diode with (j) a HNA wet-etch. (k) The wax is removed and (l) the back Al electrodes are thermally evaporated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = n i p n 2 + m 2

Metrics