Abstract

Crustal deformation measurement with a high resolution on the order of nano-strains in static to low frequency region is required for geophysical research. Optical fiber sensors are very attractive in this research field due to their unique advantages including high resolution, small size and easy deployment. In this paper, a fiber optic strain sensor with nano-strain-resolution and large measurement range for sensing the earth crustal deformation is reported. With this sensor the tide induced crustal deformation and the seismic wave were successfully recorded in field experiments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers

Qingwen Liu, Tomochika Tokunaga, and Zuyuan He
Opt. Express 19(21) 20214-20223 (2011)

DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator

Wenzhu Huang, Shengwen Feng, Wentao Zhang, and Fang Li
Opt. Express 24(11) 12321-12329 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Rep. Prog. Phys. 67(8), 1429–1496 (2004).
    [Crossref]
  2. J. Berger and R. H. Lovberg, “Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth’s strain field on the surface of the ground,” Science 170(3955), 296–303 (1970).
    [Crossref] [PubMed]
  3. S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
    [Crossref]
  4. K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
    [Crossref] [PubMed]
  5. P. Ferraro and G. De Natale, “On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,” Opt. Lasers Eng. 37(2-3), 115–130 (2002).
    [Crossref]
  6. A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
    [Crossref]
  7. L. Tsair-Chun and L. Yung-Li, “Ground vibrations detection with fiber optic sensor,” Opt. Commun. 285(9), 2363–2367 (2012).
    [Crossref]
  8. W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).
  9. T. Sato, R. Honda, and S. Shibata, “Ground strain measuring system using optical fiber sensors,” Proc. SPIE - Int. Soc. Opt. Eng. 3670, 470–479 (1999).
  10. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
    [Crossref] [PubMed]
  11. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett. 30(15), 1923–1925 (2005).
    [Crossref] [PubMed]
  12. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16(3), 1945–1950 (2008).
    [Crossref] [PubMed]
  13. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17(10), 1849–1855 (1999).
    [Crossref]
  14. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt. 49(21), 4029–4033 (2010).
    [PubMed]
  15. Q. Liu, T. Tokunaga, and Z. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Opt. Express 19(21), 20214–20223 (2011).
    [Crossref] [PubMed]
  16. Q. Liu, T. Tokunaga, and Z. He, “Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique,” Opt. Lett. 36(20), 4044–4046 (2011).
    [Crossref] [PubMed]
  17. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett. 37(3), 434–436 (2012).
    [Crossref] [PubMed]
  18. Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
    [Crossref]
  19. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  20. A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  21. Z. Fang, R. Qu, and H. Cai, Fundamentals of optical fiber sensors (Wiley, 2012).
  22. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]

2012 (4)

L. Tsair-Chun and L. Yung-Li, “Ground vibrations detection with fiber optic sensor,” Opt. Commun. 285(9), 2363–2367 (2012).
[Crossref]

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett. 37(3), 434–436 (2012).
[Crossref] [PubMed]

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

2011 (2)

2010 (1)

2008 (1)

2007 (1)

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

2005 (1)

2004 (2)

H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Rep. Prog. Phys. 67(8), 1429–1496 (2004).
[Crossref]

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

2003 (1)

K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
[Crossref] [PubMed]

2002 (1)

P. Ferraro and G. De Natale, “On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,” Opt. Lasers Eng. 37(2-3), 115–130 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

1989 (1)

1970 (1)

J. Berger and R. H. Lovberg, “Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth’s strain field on the surface of the ground,” Science 170(3955), 296–303 (1970).
[Crossref] [PubMed]

Akamatsu, J.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Araya, A.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Arie, A.

Askins, C. G.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Berger, J.

J. Berger and R. H. Lovberg, “Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth’s strain field on the surface of the ground,” Science 170(3955), 296–303 (1970).
[Crossref] [PubMed]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bodin, P.

K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
[Crossref] [PubMed]

Brodsky, E. E.

H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Rep. Prog. Phys. 67(8), 1429–1496 (2004).
[Crossref]

Chow, J. H.

Cusano, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

D’Altrui, G.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

Davis, M. A.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

De Natale, G.

P. Ferraro and G. De Natale, “On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,” Opt. Lasers Eng. 37(2-3), 115–130 (2002).
[Crossref]

Ferraro, P.

P. Ferraro and G. De Natale, “On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,” Opt. Lasers Eng. 37(2-3), 115–130 (2002).
[Crossref]

Friebele, E. J.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Fukuda, Y.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Gagliardi, G.

Galzerano, G.

Gatti, D.

Giordano, M.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

Glenn, W. H.

Gomberg, J.

K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
[Crossref] [PubMed]

Gray, M. B.

Hanada, H.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

He, Z.

Higashi, T.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Ichikawa, N.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Janner, D.

Jing, Z.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Kanamori, H.

H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Rep. Prog. Phys. 67(8), 1429–1496 (2004).
[Crossref]

Kato, T.

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

Kawasaki, I.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Kersey, A.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K. P.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lam, T. T. Y.

Laporta, P.

Larson, K. M.

K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
[Crossref] [PubMed]

Laudati, A.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

Leblanc, M.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lissak, B.

Littler, I. C.

Littler, I. C. M.

Liu, Q.

Longhi, S.

Lovberg, R. H.

J. Berger and R. H. Lovberg, “Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth’s strain field on the surface of the ground,” Science 170(3955), 296–303 (1970).
[Crossref] [PubMed]

Manli, H.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Matsui, H.

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

McClelland, D. E.

Meltz, G.

Mennella, F.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

Miyoki, S.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Mogi, K.

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

Momose, H.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Morey, W. W.

Morii, W.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Naito, I.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Ohashi, M.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Onoue, K.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Patrick, H. J.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M. A.

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ruohui, W.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Shaddock, D. A.

Takemoto, S.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Tassini, C. C.

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

Tatsumi, D.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Telada, S.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Tokunaga, T.

Tsair-Chun, L.

L. Tsair-Chun and L. Yung-Li, “Ground vibrations detection with fiber optic sensor,” Opt. Commun. 285(9), 2363–2367 (2012).
[Crossref]

Tuan, G.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Tur, M.

Uchiyama, T.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Wada, Y.

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

Wang, H. F.

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

Xueguang, Q.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Yinyan, W.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Yung-Li, L.

L. Tsair-Chun and L. Yung-Li, “Ground vibrations detection with fiber optic sensor,” Opt. Commun. 285(9), 2363–2367 (2012).
[Crossref]

Zhongyao, F.

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (1)

IEEE Photon. J. (1)

Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal Strain monitoring,” IEEE Photon. J. 4(3), 996–1003 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Laudati, F. Mennella, M. Giordano, G. D’Altrui, C. C. Tassini, and A. Cusano, “A fiber-optic Bragg grating seismic sensor,” IEEE Photon. Technol. Lett. 19(24), 1991–1993 (2007).
[Crossref]

IEEE Sens. J. (1)

W. Yinyan, Q. Xueguang, G. Tuan, H. Manli, F. Zhongyao, W. Ruohui, and Z. Jing, “A robust and compact fiber Bragg grating vibration sensor for seismic measurement,” IEEE Sens. J. 12, 800–804 (2012).

J. Geodyn. (1)

S. Takemoto, A. Araya, J. Akamatsu, W. Morii, H. Momose, M. Ohashi, I. Kawasaki, T. Higashi, Y. Fukuda, S. Miyoki, T. Uchiyama, D. Tatsumi, H. Hanada, I. Naito, S. Telada, N. Ichikawa, K. Onoue, and Y. Wada, “A 100 m laser strainmeter system installed in a 1 km deep tunnel at Kamioka, Gifu, Japan,” J. Geodyn. 38(3-5), 477–488 (2004).
[Crossref]

J. Lightwave Technol. (2)

A. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17(10), 1849–1855 (1999).
[Crossref]

Opt. Commun. (1)

L. Tsair-Chun and L. Yung-Li, “Ground vibrations detection with fiber optic sensor,” Opt. Commun. 285(9), 2363–2367 (2012).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

P. Ferraro and G. De Natale, “On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,” Opt. Lasers Eng. 37(2-3), 115–130 (2002).
[Crossref]

Opt. Lett. (5)

Rep. Prog. Phys. (1)

H. Kanamori and E. E. Brodsky, “The physics of earthquakes,” Rep. Prog. Phys. 67(8), 1429–1496 (2004).
[Crossref]

Science (2)

J. Berger and R. H. Lovberg, “Earth strain measurements with a laser interferometer: An 800-meter Michelson interferometer monitors the earth’s strain field on the surface of the ground,” Science 170(3955), 296–303 (1970).
[Crossref] [PubMed]

K. M. Larson, P. Bodin, and J. Gomberg, “Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake,” Science 300(5624), 1421–1424 (2003).
[Crossref] [PubMed]

Other (2)

T. Sato, R. Honda, and S. Shibata, “Ground strain measuring system using optical fiber sensors,” Proc. SPIE - Int. Soc. Opt. Eng. 3670, 470–479 (1999).

Z. Fang, R. Qu, and H. Cai, Fundamentals of optical fiber sensors (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Spectrum of the π-phase shifted FBG. (a) Spectrum provided by the maker (Fujikura). Notice that the dip inside the high reflection band is very weak due to insufficient wavelength resolution of the measurement. (b) Measured reflection around the dip by using of a narrow linewidth fiber laser (NKT, E15). The 3-dB bandwidth of the dip is 0.23 pm.
Fig. 2
Fig. 2 Fiber ring as reference element. The ring is made by a 3-dB 2x2 coupler with ring length of 1.4 m. (a) Structure of the fiber ring. Lightwave comes from port 2 of circulator is led to the fiber ring via port 3; The emergent lightwave from the ring is leaded to port 1 of circulator and directed to port 2. (b) The transmission of the fiber ring. The FSR is 142.86 MHz.
Fig. 3
Fig. 3 Sensor configuration. PM: phase modulator; IM: intensity modulator; FG: function generator; RFSG: radio frequency signal generator; DAQ: data acquisition; PD: photo detector; CP: coupler; CIR: circulator. All of the optical fiber components are polarization maintaining types.
Fig. 4
Fig. 4 Principle of interrogation method. (a). Configuration of the carrier and sidebands. FSR is 142.86 MHz. (b). Example of demodulated PDH signals from the fiber ring (thick, black) and from the π-FBG (thin, red). Here the laser frequency modulation range is about 140 MHz (one FSR), and Ω is ~500 MHz (adjustable from 200 MHz to 3.3 GHz on the RFSG used in the experiment).
Fig. 5
Fig. 5 Frequency-strain response of the π-FBG. The strain sensitivity is 114.0 kHz/nε according to the slope of the curve.
Fig. 6
Fig. 6 Installation of the sensor for the measurement of crustal deformation at Aburatsubo Bay, Kanagawa, Japan. Inset: sensor head configuration.
Fig. 7
Fig. 7 Field experimental results at Aburatsubo Bay, Kanagawa, Japan, during September 1-7, 2014. (a) Measured strain data by π-FBG (averaging the raw data to 1 sample per 10 seconds) and oceanic tide level over one week; (b) comparison of measured data of π-FBG sensor and extensometer; Ext: extensometer. (c) A close look at the ripple of oceanic tide, and (d) the strain data from the sensors.
Fig. 8
Fig. 8 Raw data given by the sensor (100 samples per second) around an earthquake (M3.9 at 23:48, March 17, 2015 (JST) at Chiba, Japan, where is about 100 km northeast to the sensor location).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ,
Δ λ B λ B =( α+ξ )ΔT+( 1 p e )ε,
T= t γ c γ e jβL 1t γ c e jβL ,

Metrics