Abstract

Reproducible, precise cleaving of optical fibres is of great importance to the fibre laser and telecommunications industries. We present a novel approach to the end-face processing of optical fibres using a 9.6 µm CO2 laser to produce flat, smooth and symmetric fibre end-face profiles with no rounding or melting at the edges of the fibre. As a demonstration, precision cleaving of a 400 µm diameter optical fibre is reported. For this fibre a topographical profile height of <400 nm (0.06°) and a reproducibility better than 200 nm (0.03°) was achieved. To the best of our knowledge this is the first demonstration of a CO2 process that has generated a fibre end-face topography substantially smaller than a typical mechanical cleave. Highlighting the flexibility of this system, we have also demonstrated the generation of near arbitrary fiber end-face profiles such as discrete phase steps and non-spherical surface profiles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and experimental demonstration of a large pedestal thulium-doped fibre

Nikita Simakov, Alexander V. Hemming, Adrian Carter, Kevin Farley, Alan Davidson, Neil Carmody, Mark Hughes, Jae M. O. Daniel, Len Corena, Dmitrii Stepanov, and John Haub
Opt. Express 23(3) 3126-3133 (2015)

High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6µm

D. Y. Shen, J. K. Sahu, and W. A. Clarkson
Opt. Express 14(13) 6084-6090 (2006)

Delivery of high energy Er:YAG pulsed laser light at 2.94µm through a silica hollow core photonic crystal fibre

A. Urich, R. R. J. Maier, B. J. Mangan, S. Renshaw, J. C. Knight, D. P. Hand, and J. D. Shephard
Opt. Express 20(6) 6677-6684 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Troutman, 3SAE Technologies liquid clamp cleaver LDF performance” (3SAE Technologies Inc., 2010), http://www.3sae.com/pdfdocuments/LCC_Nufern%20Results_100415.pdf .
  2. Fujikura, “Large diameter optical fiber cleaver CT-105/CT-106” (Fujikura Ltd., 2015), http://www.fujikura.co.uk/media/192078/ct-105-106_brochure_2014.pdf?iframe=true .
  3. Vytran, “Vytran, LLC LDC-400 product tour” (Vytran, 2012), https://www.youtube.com/watch?v=TuhZAx3q7s0 .
  4. W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).
  5. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14(18), 8178–8183 (2006).
    [Crossref] [PubMed]
  6. S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).
  7. G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
    [Crossref]
  8. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26(9), 1728–1731 (1987).
    [Crossref] [PubMed]
  9. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  10. G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt. 41(27), 5660–5667 (2002).
    [Crossref] [PubMed]
  11. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
    [Crossref] [PubMed]
  12. N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).
  13. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
    [Crossref] [PubMed]
  14. W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
    [Crossref]
  15. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [Crossref] [PubMed]
  16. A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).
  17. W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).
  18. G. Van Steenberge, P. Geerinck, S. Van Put, J. Watté, H. Ottevaere, H. Thienpont, and P. Van Daele, “Laser Cleaving of Glass Fibers and Glass Fiber Arrays,” J. Lightwave Technol. 23(2), 609–614 (2005).
    [Crossref]
  19. L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: Application to micromachining,” Opt. Laser Technol. 42(7), 1080–1083 (2010).
    [Crossref]
  20. F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
    [Crossref]

2013 (1)

W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).

2012 (1)

S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).

2011 (2)

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

2010 (2)

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: Application to micromachining,” Opt. Laser Technol. 42(7), 1080–1083 (2010).
[Crossref]

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

2009 (1)

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

2008 (1)

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

2007 (1)

2006 (3)

2005 (1)

2002 (1)

2000 (1)

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

1987 (1)

1982 (1)

Baker, H. J.

Barnier, F.

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Blair, D. E.

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

Bosisio, R. G.

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

Britten, J. A.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Chang, C. L.

W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).

Chuska, R. F.

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

Cooke, J. D.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Dai, W.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Dinkel, D. W.

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

Dyer, P.

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Fair, J. E.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Foster-Turner, G.

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

Geerinck, P.

Hall, D. R.

Harhira, A.

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

Heidrich, S.

S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).

Hung, M. W.

W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).

Jdanov, V.

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: Application to micromachining,” Opt. Laser Technol. 42(7), 1080–1083 (2010).
[Crossref]

Jiang, Y.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Jonasz, M.

Kashyap, R.

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

Kitamura, R.

Lévesque, L.

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: Application to micromachining,” Opt. Laser Technol. 42(7), 1080–1083 (2010).
[Crossref]

Li, X. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Lowdermilk, W. H.

Lv, H. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Markillie, G. A. J.

Matthews, M. J.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

McLachlan, A. D.

Mendez, E.

Meyer, F. P.

Milam, D.

Monjardin, J. F.

Monk, P.

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Nguyen, H. T.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Nowak, K. M.

Osborne, M.

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

Ott, M. N.

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

Ottevaere, H.

Pilon, L.

Richmann, A.

S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).

Rourke, H.

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Shen, N.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Snelling, H.

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Switzer, R. C.

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

Temple, P. A.

Thienpont, H.

Thomes, W. J.

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

Van Daele, P.

Van Put, S.

Van Steenberge, G.

Vázquez, G. V.

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

Villarreal, F. J.

Wang, H. J.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Watté, J.

Webb, A.

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

Willenborg, E.

S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).

Wu, W. H.

W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).

Xiang, X.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Yang, S. T.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Yuan, X. D.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Zheng, W. G.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Zu, X. T.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Appl. Opt. (6)

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

F. Barnier, P. Dyer, P. Monk, H. Snelling, and H. Rourke, “Fibre optic jacket removal by pulsed laser ablation,” J. Phys. D Appl. Phys. 33(7), 757–759 (2000).
[Crossref]

Opt. Commun. (1)

G. V. Vázquez, A. Harhira, R. Kashyap, and R. G. Bosisio, “Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device,” Opt. Commun. 283(14), 2824–2828 (2010).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: Application to micromachining,” Opt. Laser Technol. 42(7), 1080–1083 (2010).
[Crossref]

Opt. Lasers Eng. (1)

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng. 49(2), 273–280 (2011).
[Crossref]

Proc. SPIE (5)

W. J. Thomes, M. N. Ott, R. F. Chuska, R. C. Switzer, and D. E. Blair, “Fiber optic cables for transmission of high-power laser pulses,” Proc. SPIE 8164, 81640F (2011).

A. Webb, M. Osborne, G. Foster-Turner, and D. W. Dinkel, “Precision laser processing for micro electronics and fiber optic manufacturing,” Proc. SPIE 6880, 688003 (2008).

W. H. Wu, C. L. Chang, and M. W. Hung, “Cleaving parameter studies on glass fibers laser cutting,” Proc. SPIE 8769, 87693P (2013).

S. Heidrich, A. Richmann, and E. Willenborg, “Development of a laser-based process chain for manufacturing free form optics,” Proc. SPIE 8433, 84330P (2012).

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, J. D. Cooke, and S. T. Yang, “Study of CO2 laser smoothing of surface roughness in fused silica,” Proc. SPIE 7504, 750411 (2009).

Other (3)

C. Troutman, 3SAE Technologies liquid clamp cleaver LDF performance” (3SAE Technologies Inc., 2010), http://www.3sae.com/pdfdocuments/LCC_Nufern%20Results_100415.pdf .

Fujikura, “Large diameter optical fiber cleaver CT-105/CT-106” (Fujikura Ltd., 2015), http://www.fujikura.co.uk/media/192078/ct-105-106_brochure_2014.pdf?iframe=true .

Vytran, “Vytran, LLC LDC-400 product tour” (Vytran, 2012), https://www.youtube.com/watch?v=TuhZAx3q7s0 .

Supplementary Material (1)

» Media 1: MP4 (3698 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the CO2 laser cleaving experimental setup: An optical fibre is held in a removable chuck. Translation in the x, y and z axis, as well as tilt is achieved through a series of stepper motors. The CO2 laser beam is focused onto the optical fibre using a 25 mm ZnSe aspheric lens. (b) An inscription on the surface of a 400 µm diameter fibre illustrating the ~50 µm spot size of the CO2 laser beam.
Fig. 2
Fig. 2 (a) Fibre prior to processing with an indication of the direction of the CO2 laser beam propagation (b) Flat end-face process completed. A movie of a typical process is provided in Media 1.
Fig. 3
Fig. 3 Profile height as a function of fiber tilt for pulse durations of 80 and 90 µs.
Fig. 4
Fig. 4 Radial slope measured for a ramp created using pulse durations which increased linearly from 40 µs to 50 µs every 1.8 degrees, with the fibre held at a tilt angle of 110°. For pulse durations below 46 µs the slope is negative and the radial profile is concave, while above this value the slope is positive corresponding to a convex profile. The insert shows the reconstructed 3D profile of the ramp with a maximum profile height of 3.2 µm.
Fig. 5
Fig. 5 Reconstructed end-face optical fibre topography measured using a 650 nm phase-shifting interferometer for a series of cleaves fabricated with a variety of CO2 laser pulse durations as a function of rotation angle at a constant fibre tilt: (a) 40 µs pulse fired every 0.45° degrees (b) 70 µs pulses fired every 0.45° (c) ramped pulse durations from 0.45° degrees, starting at 40 µs and finishing at 60 µs, (d) alternating 40 µs and 45 µs pulsing every 7.2° spindle rotation.,(e) alternating 60 µs and 70 µs pulsing every 90° spindle rotation and (f) alternating pulsing every 180° spindle rotation.
Fig. 6
Fig. 6 A series of 10 cleaves of a 400 µm. The end-face is inspected using a phase shifting interferometer operating at ~650 nm. All samples show a large central fringe and symmetric outer fringes. The standard deviation of the surface variation was <200 nm.
Fig. 7
Fig. 7 A nearly flat 400 µm fibre end-face fabricated using CO2 laser pulses of 47 µs duration fired every 1.8°, giving a slightly convex shape.

Metrics