Abstract

We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm

Jakub Novák, Jonathan T. Green, Thomas Metzger, Tomáš Mazanec, Bedřich Himmel, Martin Horáček, Zbyněk Hubka, Robert Boge, Roman Antipenkov, František Batysta, Jack A. Naylon, Pavel Bakule, and Bedřich Rus
Opt. Express 24(6) 5728-5733 (2016)

Thin-disk ring amplifier for high pulse energy

Robert Jung, Johannes Tümmler, Thomas Nubbemeyer, and Ingo Will
Opt. Express 24(5) 4375-4381 (2016)

High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier

Chun-Lin Chang, Peter Krogen, Kyung-Han Hong, Luis E. Zapata, Jeffrey Moses, Anne-Laure Calendron, Houkun Liang, Chien-Jen Lai, Gregory J. Stein, Phillip D. Keathley, Guillaume Laurent, and Franz X. Kärtner
Opt. Express 23(8) 10132-10144 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
    [Crossref]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
    [Crossref]
  4. J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
    [Crossref]
  5. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [Crossref]
  6. T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
    [Crossref]
  7. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  8. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
    [Crossref] [PubMed]
  9. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  10. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  11. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
    [Crossref] [PubMed]
  12. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  13. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
    [Crossref] [PubMed]
  14. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
    [Crossref]
  15. M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
    [Crossref]
  16. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [Crossref] [PubMed]
  17. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
    [Crossref]
  18. A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).
  19. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
    [Crossref] [PubMed]
  20. M. Chyla, T. Miura, M. Smrz, H. Jelinkova, A. Endo, and T. Mocek, “Optimization of beam quality and optical-to-optical efficiency of Yb:YAG thin-disk regenerative amplifier by pulsed pumping,” Opt. Lett. 39(6), 1441–1444 (2014).
    [Crossref] [PubMed]
  21. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  22. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO₃,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref] [PubMed]
  23. Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).
  24. W. Koechner, Solid-State Laser Engineering, 5th rev. ed. (Springer, 2006).
  25. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express 20(5), 5038–5043 (2012).
    [Crossref] [PubMed]

2014 (5)

2013 (2)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

2012 (2)

2011 (2)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (3)

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

2002 (3)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

1997 (1)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

1996 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

1995 (1)

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

1994 (1)

Ahmad, I.

Almási, G.

Baum, P.

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bonacina, L.

Bousquet, B.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Canioni, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Carrig, T. J.

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

Chekalin, S. V.

Chyla, M.

Clement, T. S.

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

Desbarats, P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Drescher, M.

Düsterer, S.

Endo, A.

Faatz, B.

Fan, T. Y.

Feldhaus, J.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Frederique, L.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Fülöp, J. A.

Furukawa, Y.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Giesen, A.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Guillet, J. P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Hebling, J.

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hönninger, C.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Jelinkova, H.

Johannsen, I.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Jung, R.

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Karsch, S.

Keller, U.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Kienberger, R.

Killi, A.

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Kleinbauer, J.

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Klingebiel, S.

Kozma, I.

Krausz, F.

Kuhl, J.

Lombosi, C.

Major, Z.

Manek-Hönninger, I.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Maruyama, M.

Metzger, T.

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Miura, T.

Mocek, T.

Moser, M.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Mounaix, P.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Nagashima, K.

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Neuhaus, J.

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Nickles, P. V.

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Ochi, Y.

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref]

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Okada, H.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Ollmann, Z.

Pálfalvi, L.

Prandolini, M. J.

Recur, B.

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

Riedel, R.

Rodrigues, G.

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

Rossbach, J.

Ryabov, A.

Sandner, W.

Schad, S.

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Schneider, W.

Schulz, M.

Schwarz, A.

Shmitz, C.

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Skrobol, C.

Smrz, M.

Stepanov, A. G.

Stewart, K. R.

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

Stiel, H.

Sugiyama, A.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Sumida, D. S.

Sutter, D.

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Tanaka, M.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Tateno, R.

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Tavella, F.

Taylor, A. J.

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

Teisset, C. Y.

Trushin, S. A.

Tsubouchi, M.

Tümmler, J.

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Wandt, C.

Willner, A.

Wolf, J.-P.

Yoshida, F.

Zawischa, I.

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Zhang, G.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Appl. Phys. Lett. (3)

T. J. Carrig, G. Rodrigues, T. S. Clement, A. J. Taylor, and K. R. Stewart, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66(10), 10–12 (1995).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared, Millimeter, Terahertz Waves 35(4), 382–411 (2014).
[Crossref]

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matte and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
[Crossref]

W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO₃,” Opt. Lett. 39(23), 6604–6607 (2014).
[Crossref] [PubMed]

M. Chyla, T. Miura, M. Smrz, H. Jelinkova, A. Endo, and T. Mocek, “Optimization of beam quality and optical-to-optical efficiency of Yb:YAG thin-disk regenerative amplifier by pulsed pumping,” Opt. Lett. 39(6), 1441–1444 (2014).
[Crossref] [PubMed]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[Crossref] [PubMed]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
[Crossref] [PubMed]

J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
[Crossref] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

Proc. SPIE (2)

A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, J. Neuhaus, and C. Shmitz, “Current status and development trends of disk laser technology,” Proc. SPIE 6871, 68710L (2008).

Y. Ochi, K. Nagashima, H. Okada, M. Tanaka, R. Tateno, Y. Furukawa, and A. Sugiyama, “Development of high resistant anti-reflection coating by using Al2O3/SiO2 multilayer,” Proc. SPIE 8885, 88851Z (2013).

Other (1)

W. Koechner, Solid-State Laser Engineering, 5th rev. ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Spectrum of seed laser after oscillator (red), after pulse stretcher (yellow), and after fiber amplifier (blue).
Fig. 2
Fig. 2 (a) Schematics of thin-disk amplifier and (b) pump spot pattern on thin-disk. The thin-disk is made of a 7at% doped Yb:YAG ceramic with a 0.1° wedged surface.
Fig. 3
Fig. 3 (a) Schematic layout of regenerative amplifier and (b) beam diameters in cavity for various radii of curvature of thin-disk. (TFP: thin film polarizer, FR: Faraday rotator, HWP: half-wave plate, PC: Pockels cell, QWP: quarter-wave plate, EM: end mirror, CC: concave mirror, CX: convex mirror, TD: thin-disk, PIN: Si photo diode, and PM: power meter.) The others are flat mirrors for folding.
Fig. 4
Fig. 4 (a) Pulse energy amplification data (circles) with exponential fitting curve (dotted line) as a function of number of round trips. The fitting curve is obtained by using the data indicated with the solid outline. (b) Spatial profile of output beam.
Fig. 5
Fig. 5 (a) Spectra of input pulse (blue) and output pulse (red) for and from regenerative amplifier. (b) Second-harmonic autocorrelation trace of compressed pulse, measured data (square), and Gaussian fitting (line).
Fig. 6
Fig. 6 Experimental setup for THz wave generation and measurement; TG: transmission grating, AL: aspheric lens, OAP: off-axis parabolic mirror, HWP: half-wave plate, QWP: quarter-wave plate, W: Wollaston prism, PD1,2: fast balanced photodiode.
Fig. 7
Fig. 7 (a) Input spectrum (red dotted line) and broadened spectrum by the SPM in the optical fiber (blue solid line). These spectra are normalized against each peak intensity value. (b) Second-harmonic autocorrelation trace data (square) with Gaussian fitting (solid line).
Fig. 8
Fig. 8 (a) Electric field and (b) its Fourier-transformed spectrum of the generated THz pulse.
Fig. 9
Fig. 9 THz output energy versus pump energy. The fitting curve is a second-order polynomial.

Metrics