Abstract

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correlation between photoluminescence and morphology for single layer self-assembled InGaAs/GaAs quantum dots

Baolai Liang, Qing Yuan, Linlin Su, Ying Wang, Yingnan Guo, Shufang Wang, Guangsheng Fu, Euclydes Marega, Yuriy I. Mazur, Morgan E. Ware, and Gregory Salamo
Opt. Express 26(18) 23107-23118 (2018)

Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure

L.J. Higgins, V.D. Karanikolas, C.A. Marocico, A.P. Bell, T. C. Sadler, P.J. Parbrook, and A.L. Bradley
Opt. Express 23(2) 1377-1387 (2015)

Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates

Hongbing Cai, YuKun Wu, Yanmeng Dai, Nan Pan, Yangchao Tian, Yi Luo, and Xiaoping Wang
Opt. Express 24(18) 20808-20815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
    [Crossref] [PubMed]
  2. J. Lin, S.-H. Oh, H.-M. Nguyen, and F. Reitich, “Field enhancement and saturation of millimetre waves inside a metallic nanogap,” Opt. Express 22(12), 14402–14410 (2014).
    [Crossref] [PubMed]
  3. T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
    [Crossref] [PubMed]
  4. A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
    [Crossref] [PubMed]
  5. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
    [Crossref] [PubMed]
  6. P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
    [Crossref] [PubMed]
  7. D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
    [Crossref]
  8. T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
    [Crossref]
  9. D. Weber, J. Katzmann, F. Neubrech, T. Haertling, and A. Pucci, “Spectral tuning of IR-resonant nanoantennas by nanogap engineering,” Opt. Mater. Express 1(7), 1301–1306 (2011).
    [Crossref]
  10. M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
    [Crossref]
  11. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  12. D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [Crossref] [PubMed]
  13. M. D. Fischbein and M. Drndic, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [Crossref] [PubMed]
  14. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
    [Crossref] [PubMed]
  15. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
    [Crossref] [PubMed]
  16. R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
    [Crossref]
  17. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  18. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
    [Crossref]
  19. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  20. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
    [Crossref] [PubMed]
  21. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [Crossref]
  22. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  23. H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
    [PubMed]
  24. H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
    [Crossref]
  25. S. A. Maier, “Plasmonic field enhancement and sers in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [Crossref] [PubMed]
  26. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
    [Crossref]
  27. D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
    [Crossref] [PubMed]
  28. L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
    [Crossref]
  29. Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
    [Crossref]
  30. J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
    [Crossref] [PubMed]
  31. D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338 (1996).
    [Crossref]
  32. A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor micro-crystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
    [Crossref]
  33. M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
    [Crossref]
  34. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
    [Crossref]
  35. M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
    [Crossref]
  36. J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometersized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (8)

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

J. Lin, S.-H. Oh, H.-M. Nguyen, and F. Reitich, “Field enhancement and saturation of millimetre waves inside a metallic nanogap,” Opt. Express 22(12), 14402–14410 (2014).
[Crossref] [PubMed]

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

2013 (2)

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

2012 (4)

P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
[Crossref] [PubMed]

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

2011 (4)

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

D. Weber, J. Katzmann, F. Neubrech, T. Haertling, and A. Pucci, “Spectral tuning of IR-resonant nanoantennas by nanogap engineering,” Opt. Mater. Express 1(7), 1301–1306 (2011).
[Crossref]

2010 (5)

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[Crossref]

M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
[Crossref]

2009 (1)

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

2007 (4)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

M. D. Fischbein and M. Drndic, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

2006 (3)

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

S. A. Maier, “Plasmonic field enhancement and sers in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[Crossref] [PubMed]

2003 (1)

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

2002 (1)

A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor micro-crystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

2000 (1)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

1996 (1)

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338 (1996).
[Crossref]

Ahn, J. S.

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometersized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

Aizpurua, J.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

Ajito, K.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

Alves-Santos, M.

M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
[Crossref]

Amassian, A.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Anthopoulos, T. D.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Aono, M.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

Baehr-Jones, T.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

Bahk, Y.-M.

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometersized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Basu, J. K.

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
[Crossref]

Bawendi, M.

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338 (1996).
[Crossref]

Beesley, D. J.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Borisov, A. G.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

Brongersma, M. L.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[Crossref]

Bruce, R. C.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Buse, K.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Carlos Cuevas, J.

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, X.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Choi, S. B.

Cronin, S. B.

Cubukcu, E.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

De Angelis, F.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

De Donato, F.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

deMello, J. C.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Di Fabrizio, E.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Di Felice, R.

M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
[Crossref]

Di Pietro, P.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Drndic, M.

M. D. Fischbein and M. Drndic, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Ebihara, T.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Ekinci, Y.

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Fischbein, M. D.

M. D. Fischbein and M. Drndic, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Goldoni, G.

M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
[Crossref]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

Guckenberger, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

Haertling, T.

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Han, S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

Haridas, M.

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
[Crossref]

Hasegawa, T.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Hegg, M. C.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

Hentschel, M.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

Hochberg, M.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

Horning, M. P.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

Hrtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hsu, J. W. P.

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

Huck, C.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hueser, F.

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Im, H.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Jagadamma, L. K.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Jiang, J.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Jun, Y. C.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[Crossref]

Kang, T.

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

D. Weber, J. Katzmann, F. Neubrech, T. Haertling, and A. Pucci, “Spectral tuning of IR-resonant nanoantennas by nanogap engineering,” Opt. Mater. Express 1(7), 1301–1306 (2011).
[Crossref]

Kim, D.-S.

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometersized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

Kim, Y. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Knabe, B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Kurth, M. L.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lang, D. V.

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

Lee, H.

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Liberale, C.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Lin, J.

Lin, L. Y.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

Lindquist, N. C.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lippitz, M.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Loo, Y.-L.

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

Lupi, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

S. A. Maier, “Plasmonic field enhancement and sers in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[Crossref] [PubMed]

Manna, L.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Marras, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Martin, O. J. F.

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

McLachlan, M. A.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Merkel, T. J.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Metzger, B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Murakoshi, K.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

Murray, C. B.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Nabika, H.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

Natelson, D.

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Navarro-Cia, M.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

Negishi, R.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Neubrech, F.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

D. Weber, J. Katzmann, F. Neubrech, T. Haertling, and A. Pucci, “Spectral tuning of IR-resonant nanoantennas by nanogap engineering,” Opt. Mater. Express 1(7), 1301–1306 (2011).
[Crossref]

Nguyen, H.-M.

Nielsen, M. G.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

Niskala, J. R.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Nordlander, P.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Norris, D.

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338 (1996).
[Crossref]

Ocelic, N.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

Ogawa, T.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Oh, S.-H.

J. Lin, S.-H. Oh, H.-M. Nguyen, and F. Reitich, “Field enhancement and saturation of millimetre waves inside a metallic nanogap,” Opt. Express 22(12), 14402–14410 (2014).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Pala, R.

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[Crossref]

Park, H.-R.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, N.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

Park, Y. S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Pauly, F.

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Pavaskar, P.

Pelton, M.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Perucchi, A.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Piao, X.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Prato, M.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Praveena, M.

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

ProiettiZaccaria, R.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Pucci, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

D. Weber, J. Katzmann, F. Neubrech, T. Haertling, and A. Pucci, “Spectral tuning of IR-resonant nanoantennas by nanogap engineering,” Opt. Mater. Express 1(7), 1301–1306 (2011).
[Crossref]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

Razzari, L.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Reitich, F.

Rice, W. C.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Rogers, J. A.

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

Sawai, Y.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

Schumacher, T.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Semple, J.

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Siegfried, T.

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

Sigg, H.

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

Singh, D. K.

Solak, H. H.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

Takimoto, B.

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

Tan, S. J.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

Tanaka, H.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Terabe, K.

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Theiss, J.

Toma, A.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Tripathi, L. N.

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
[Crossref]

Tsui, F.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Tuccio, S.

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Valson, P.

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

Vogt, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Wang, L.

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

Ward, D. R.

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Weber, D.

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

Ye, X.

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

Yoffe, A. D.

A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor micro-crystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

You, W.

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

ACS Nano (2)

T. Siegfried, L. Wang, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Metal double layers with sub-10 nm channels,” ACS Nano 8(4), 3700–3706 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hrtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Adv. Phys. (1)

A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor micro-crystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

Appl. Phys. Lett. (6)

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett. 98(6), 63305 (2011).
[Crossref]

L. N. Tripathi, M. Praveena, P. Valson, and J. K. Basu, “Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna,” Appl. Phys. Lett. 105, 163106 (2014).
[Crossref]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99(26), 263302 (2011).
[Crossref]

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, “Nanogap quantum dot photodetectors with high sensitivity and bandwidth,” Appl. Phys. Lett. 96(10), 101118 (2010).
[Crossref]

R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, and T. Ogawa, “Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques,” Appl. Phys. Lett. 88(22), 223111 (2006).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

J. R. Niskala, W. C. Rice, R. C. Bruce, T. J. Merkel, F. Tsui, and W. You, “Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (NTP),” J. Am. Chem. Soc. 134(29), 12072–12082 (2012).
[Crossref] [PubMed]

Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc. 129(6), 1658–1662 (2007).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

J. Phys. Chem. C (2)

Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114(16), 7269–7273 (2010).
[Crossref]

M. Alves-Santos, R. Di Felice, and G. Goldoni, “Dielectric functions of semiconductor nanoparticles from the optical absorption spectrum: the case of CdSe and CdS,” J. Phys. Chem. C 114(9), 3776–3780 (2010).
[Crossref]

Nano Lett. (8)

Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett. 3(7), 913–917 (2003).
[Crossref]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13(4), 1782–1786 (2013).
[PubMed]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7(5), 1396–1400 (2007).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref]

M. D. Fischbein and M. Drndic, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C. B. Murray, B. Knabe, K. Buse, and H. Giessen, “Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas,” Nano Lett. 14(5), 2867–2872 (2014).
[Crossref] [PubMed]

A. Toma, S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. ProiettiZaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, “Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots,” Nano Lett. 15(1), 386–391 (2014).
[Crossref] [PubMed]

Nat. Commun. (3)

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

D. J. Beesley, J. Semple, L. K. Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos, and J. C. deMello, “Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography,” Nat. Commun. 5, 3933 (2014).
[Crossref] [PubMed]

Nat. Nanotechno. (1)

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechno. 9(4), 290–294 (2014).
[Crossref]

Nat. Nanotechnol. (1)

D. R. Ward, F. Hueser, F. Pauly, J. Carlos Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. B (2)

D. Norris and M. Bawendi, “Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots,” Phys. Rev. B 53(24), 16338 (1996).
[Crossref]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Phys. Rev. Lett. (1)

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of self-assembly lithography technique (cross sectional view): (a) A cleaned and dried substrate of sapphire; (b) PR pattern after using a mask aligner and UV lithography; (c) a chrome layer of 10 nm over the PR pattern; (d) a 200 nm thick silver film over the chrome layer using thermal evaporator; (e) first layer of metal pattern after lift off of PR; (f) self-assembled monolayer of QDs after dipping of first layer of metal into toluene solution of OT functionalized QDs; (g) second layer of metal deposited over self-assembled monolayer; (h) final QDs filled nanogap metamaterial after taping off second layer of silver.
Fig. 2
Fig. 2 Optical and electron microscopy characterization of QDs-nanogap metamaterials: (a) UV-Visible absorption spectra and PL from pristine QDs of mean size 4.5±0.5 nm; (b) optical micrograph of R2 through white light (unpolarized) transmittance showing ring of dimension (20 μm × 20 μm); (c) Scanning electron microscope image of QDs-nanogap metamaterial R2. Black arrows indicate the thickness of first (200 nm) and second layer (190 nm), while blue arrow indicates the QDs-nanogap; (d) optical micrograph of R1 through white light reflection showing rectangular ring of dimension (300 μm × 50 μm); (e) cross sectional transmission electron microscope image of QDs-nanogap metamaterial R1. Black arrows indicate the thickness of first (200 nm) and second layer (100 nm), while red arrow indicates the QDs-nanogap further marked by doted blue line; (f) PL intensity map (in the reflection mode) of the QDs-nanogap metamaterial (R1).
Fig. 3
Fig. 3 Photoluminescence measurement through the QDs-nanogap metamaterial: (a), Photoluminescence measurement set-up (b), Photoluminescence spectra though the QDs-nanogap metamaterial R2. Inset: Photoluminescence from the pristine QDs-PMMA thin film. Here, NA: numerical aperture and CCD: Charge coupled device, LP: long pass filter. λexcitation: excitation wavelength. Bare QD film refers to CdSe QDs-PMMA thin film.
Fig. 4
Fig. 4 2D FDTD simulation of the QDs - silver nanogap of an infinite slit: XY cross sectional view of the electric field enhancement factor profile at 514 nm for the metamaterial R2. Y is the direction of incident plane wave and X that of its polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F a v P l = ( I g a p I r e f ) × N
N = ( f r e f f g a p ) × ( t r e f t g a p ) × ( P r e f P g a p ) × ( A r e f A g a p )

Metrics