Abstract

This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions. The study extends the concept of transverse nonlinear parametric interaction toward infrared frequency conversion in semiconductors. It also offers an effective nondestructive method to visualise and diagnose variations of second-order nonlinear coefficients inside semiconductors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unified approach to Čerenkov second harmonic generation

Vito Roppo, Ksawery Kalinowski, Yan Sheng, Wieslaw Krolikowski, Crina Cojocaru, and Jose Trull
Opt. Express 21(22) 25715-25726 (2013)

Enhanced fourth harmonic generation via nonlinear Čerenkov interaction in periodically poled lithium niobate crystal

Xin Chen, Krzysztof Switkowski, Xiaopeng Hu, Wieslaw Krolikowski, and Yan Sheng
Opt. Express 24(26) 29948-29954 (2016)

Multi-directional Čerenkov second harmonic generation in two-dimensional nonlinear photonic crystal

Yan Sheng, Vito Roppo, Mingliang Ren, Ksawery Kalinowski, Crina Cojocaru, Jose Trull, Zhiyuan Li, Kaloian Koynov, and Wieslaw Krolikowski
Opt. Express 20(4) 3948-3953 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [Crossref]
  2. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [Crossref]
  3. A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2, 1020–1025 (2012).
    [Crossref]
  4. K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
    [Crossref]
  5. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
    [Crossref] [PubMed]
  6. O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
    [Crossref]
  7. M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
    [Crossref]
  8. A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
    [Crossref]
  9. R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, “Surface-emitting second-harmonic generation in a semiconductor vertical resonator,” Opt. Lett. 18, 1798–1800 (1993).
    [Crossref] [PubMed]
  10. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  11. M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).
  12. T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).
  13. L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).
  14. G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35, 505–507 (2010).
    [PubMed]
  15. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
    [PubMed]
  16. J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).
  17. I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
  18. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
  19. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
    [PubMed]
  20. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
    [PubMed]
  21. A. Shapira and A. Arie, “Phase-matched nonlinear diffraction,” Opt. Lett. 36, 1933–1935 (2011).
    [Crossref] [PubMed]
  22. W. Wang, Y. Sheng, Y. Kong, A. Arie, and W. Krolikowski, “Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure,” Opt. Lett. 35, 3790–3792 (2010).
    [Crossref] [PubMed]
  23. N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
    [Crossref]
  24. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
    [Crossref]
  25. E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangledphotons,” Opt. Express 21, 6689–6696 (2013).
    [Crossref] [PubMed]
  26. Y. Sheng, A. Best, H.-J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation,” Opt. Express 18, 16539–16545 (2010).
    [Crossref] [PubMed]
  27. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
    [Crossref]
  28. X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express 18, 15597–15602 (2010).
    [Crossref] [PubMed]
  29. D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
    [Crossref]
  30. D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).
  31. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).
  32. E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).
  33. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
  34. Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).
  35. Y. Sheng, Q. Kong, V. Roppo, K. Kalinowski, Q. Wang, C. Cojocaru, and W. Krolikowski, “Theoretical study of Čerenkov-type second-harmonic generation in periodically poled ferroelectric crystals,” J. Opt. Soc. Am. B 29, 312–318 (2012).
  36. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.
  37. Y. Sheng, V. Roppo, K. Kalinowski, and W. Krolikowski, “Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium,” Opt. Lett. 37, 3864–3866 (2012).
    [PubMed]

2014 (2)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

2013 (1)

2012 (7)

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).

Y. Sheng, Q. Kong, V. Roppo, K. Kalinowski, Q. Wang, C. Cojocaru, and W. Krolikowski, “Theoretical study of Čerenkov-type second-harmonic generation in periodically poled ferroelectric crystals,” J. Opt. Soc. Am. B 29, 312–318 (2012).

Y. Sheng, V. Roppo, K. Kalinowski, and W. Krolikowski, “Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium,” Opt. Lett. 37, 3864–3866 (2012).
[PubMed]

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2, 1020–1025 (2012).
[Crossref]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
[Crossref]

2011 (2)

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

A. Shapira and A. Arie, “Phase-matched nonlinear diffraction,” Opt. Lett. 36, 1933–1935 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
[Crossref]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

2008 (3)

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

2006 (1)

2005 (1)

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

2004 (2)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
[Crossref]

2002 (1)

2001 (2)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

1998 (2)

1993 (1)

1992 (1)

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

1976 (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

1968 (1)

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).

1962 (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Abolghasem, P.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

An, N.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

Arie, A.

Arisholm, G.

Armstrong, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Avella, M.

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

Bacher, K.

Bang, O.

Bass, M.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Becouarn, L.

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).

Best, A.

Bijlani, B.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Bliss, D.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

Bloembergen, N.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Bloom, G.

Bortz, M. L.

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Brevignon, M.

Butt, H.-J.

Byer, R.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

Byer, R. L.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Cadoret, R.

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

Carras, M.

Castelluci, D.

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

Chen, X.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express 18, 15597–15602 (2010).
[Crossref] [PubMed]

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Cojocaru, C.

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

DeCusatis, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Deng, X.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express 18, 15597–15602 (2010).
[Crossref] [PubMed]

Ducuing, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Eisenberg, H. S.

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
[Crossref]

Enoch, J.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Eyres, L. A.

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Faye, D.

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).

Fejer, M.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

Fejer, M. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, “Surface-emitting second-harmonic generation in a semiconductor vertical resonator,” Opt. Lett. 18, 1798–1800 (1993).
[Crossref] [PubMed]

Fischer, R.

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Fragemann, A.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
[Crossref]

Freund, I.

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Ganany-Padowicz, A.

E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, “Compact 2D nonlinear photonic crystal source of beamlike path entangledphotons,” Opt. Express 21, 6689–6696 (2013).
[Crossref] [PubMed]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
[Crossref]

Gerard, B.

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Gérard, B.

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2, 1020–1025 (2012).
[Crossref]

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).

Gil-Lafon, E.

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

Grisard, A.

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2, 1020–1025 (2012).
[Crossref]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35, 505–507 (2010).
[PubMed]

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).

Habshoosh, N.

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Halevy, A.

Han, J.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Harris, J. S.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, “Surface-emitting second-harmonic generation in a semiconductor vertical resonator,” Opt. Lett. 18, 1798–1800 (1993).
[Crossref] [PubMed]

Helmy, A.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Hoefling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Holmes, B.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Hurlbut, W.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Hutchings, D.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Ito, M.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Jimenez, J.

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

Jundt, D. H.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

Kalinowski, K.

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Kong, Q.

Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).

Y. Sheng, Q. Kong, V. Roppo, K. Kalinowski, Q. Wang, C. Cojocaru, and W. Krolikowski, “Theoretical study of Čerenkov-type second-harmonic generation in periodically poled ferroelectric crystals,” J. Opt. Soc. Am. B 29, 312–318 (2012).

Kong, Y.

Koynov, K.

Kozlov, V.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Krolikowski, W.

Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).

Y. Sheng, Q. Kong, V. Roppo, K. Kalinowski, Q. Wang, C. Cojocaru, and W. Krolikowski, “Theoretical study of Čerenkov-type second-harmonic generation in periodically poled ferroelectric crystals,” J. Opt. Soc. Am. B 29, 312–318 (2012).

Y. Sheng, V. Roppo, K. Kalinowski, and W. Krolikowski, “Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium,” Opt. Lett. 37, 3864–3866 (2012).
[PubMed]

W. Wang, Y. Sheng, Y. Kong, A. Arie, and W. Krolikowski, “Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure,” Opt. Lett. 35, 3790–3792 (2010).
[Crossref] [PubMed]

Y. Sheng, A. Best, H.-J. Butt, W. Krolikowski, A. Arie, and K. Koynov, “Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation,” Opt. Express 18, 16539–16545 (2010).
[Crossref] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Kuo, P.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

Lakshminarayanan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Lallier, E.

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2, 1020–1025 (2012).
[Crossref]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35, 505–507 (2010).
[PubMed]

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).

D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).

Larat, C.

Laurell, F.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
[Crossref]

Lehoux, J.

Levi, O.

Li, G.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Lin, A.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Lodenkamper, R.

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Lynch, C.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

MacDonald, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Madden, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Magel, G.

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

Mahajan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Marcadet, X.

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Megidish, E.

Napierala, J.

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Neshev, D. N.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Nikodem, M.

M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
[Crossref]

Nishizawa, J.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Pasiskevicius, V.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
[Crossref]

Pelc, J. S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Pershan, P.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Pimpinelli, A.

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

Pinguet, T. J.

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Ren, H.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

Roppo, V.

Saito, K.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Saltiel, S. M.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Sasaki, T.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Schaar, J.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Schober, A.

Shapira, A.

Sheng, Y.

Simanovskii, D. M.

Skauli, T.

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Stewart Aitchison, J.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Suto, K.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Tanabe, T.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Van Stryland, E.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

Vodopyanov, K.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

Vodopyanov, K. L.

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
[Crossref]

Wada, O.

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Wagner, S.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Wang, Q.

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Wang, W.

Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).

W. Wang, Y. Sheng, Y. Kong, A. Arie, and W. Krolikowski, “Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure,” Opt. Lett. 35, 3790–3792 (2010).
[Crossref] [PubMed]

Weidmann, D.

M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
[Crossref]

Weyburne, D.

Wysocki, G.

M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
[Crossref]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Younis, U.

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Yu, X.

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

Zheng, Y.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

App. Phys. B (1)

M. Nikodem, D. Weidmann, and G. Wysocki, “Chirped laser dispersion spectroscopy with harmonic detection of molecular spectra,” App. Phys. B 109, 477–483 (2012).
[Crossref]

App. Phys. Lett. (1)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” App. Phys. Lett. 79, 904–906 (2001).

Appl. Phys. Lett. (3)

D. Faye, A. Grisard, E. Lallier, B. Gérard, M. Avella, and J. Jimenez, “Distribution of point defects in orientation-patterned GaAs crystals: A cathodoluminescence study,” Appl. Phys. Lett. 93, 151115 (2008).
[Crossref]

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett. 100, 221103 (2012).
[Crossref]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in the domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85, 375–377 (2004).
[Crossref]

IEEE J. Quant. Electron. (1)

M. Fejer, G. Magel, D. H. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quant. Electron. 28, 2631–2654 (1992).

IEEE J. Select. Topics Quantum Electron. (1)

J. Schaar, K. Vodopyanov, P. Kuo, M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. Kozlov, and W. Hurlbut, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched gallium arsenide,” IEEE J. Select. Topics Quantum Electron. 14, 354–362 (2008).

J. Cryst. Growth (1)

E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, “Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies,” J. Cryst. Growth 222, 482–496 (2001).

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W. Krolikowski, “Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process,” J. Phys. B: At. Mol. Opt. Phys. 45, 055401 (2012).

Laser Photon. Rev. (2)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).

A. Helmy, P. Abolghasem, J. Stewart Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4̄-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[Crossref]

Nature (1)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature 491, 421–426 (2012).
[Crossref] [PubMed]

Nature Photon. (1)

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nature Photon. 9, 395–398 (2009).
[Crossref]

New J. Phys. (1)

O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys. 6, 183 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[PubMed]

A. Shapira and A. Arie, “Phase-matched nonlinear diffraction,” Opt. Lett. 36, 1933–1935 (2011).
[Crossref] [PubMed]

W. Wang, Y. Sheng, Y. Kong, A. Arie, and W. Krolikowski, “Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure,” Opt. Lett. 35, 3790–3792 (2010).
[Crossref] [PubMed]

R. Lodenkamper, M. L. Bortz, M. M. Fejer, K. Bacher, and J. S. Harris, “Surface-emitting second-harmonic generation in a semiconductor vertical resonator,” Opt. Lett. 18, 1798–1800 (1993).
[Crossref] [PubMed]

T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27, 628–630 (2002).

L. Becouarn, E. Lallier, M. Brevignon, and J. Lehoux, “Cascaded second-harmonic and sum-frequency generation of a CO2 laser by use of a single quasi-phase-matched GaAs crystal,” Opt. Lett. 23, 1508–1510 (1998).

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett. 35, 505–507 (2010).
[PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006).
[PubMed]

Y. Sheng, V. Roppo, K. Kalinowski, and W. Krolikowski, “Role of a localized modulation of χ(2) in Čerenkov second-harmonic generation in nonlinear bulk medium,” Opt. Lett. 37, 3864–3866 (2012).
[PubMed]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. B (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[Crossref]

Phys. Rev. Lett. (3)

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[PubMed]

Rev. Sci. Instrum. (1)

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers,” Rev. Sci. Instrum. 76, 123109 (2005).
[Crossref]

Other (2)

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, vol. 4 of Handbook of Optics (McGraw-Hill Education, 2009), 3rd ed.

D. Faye, E. Lallier, A. Grisard, and B. Gérard, “Thick low-loss Orientation-Patterned Gallium Arsenide (OPGaAs) samples for Mid-Infrared Laser Sources,” Proc. SPIE6740 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of different types of SHG in OP-GaAs. (a) Traditional collinear SHG, (b) Bragg SHG satisfies the full vectorial quasi-phase matching condition, (c) Raman-Nath SHG satisfies only the transverse quasi-phase matching condition, and (d) Čerenkov SHG is defined by the longitudinal quasi-phase matching condition. k⃗1 and k⃗2 are the wave vectors of the fundamental and second harmonic waves, respectively, G⃗m is a reciprocal lattice vector and Δk⃗L(T) are the longitudinal and transverse phase mismatches, respectively.
Fig. 2
Fig. 2 Cross-sections of a 500 μm thick GaAs film grown on a OP-GaAs template of period Λ = 64 μm.
Fig. 3
Fig. 3 (a) The experimental setup for observation of NLD. The incident laser beam is loosely focused with a lens (L, f = 150 mm) onto the OP-GaAs sample along the domain walls, which separate positive and negative χ(2) domains. The closeup in the circle shows the focal spot, which covers multiple periods of the OP-GaAs. On the screen is shown the recorded nonlinear diffraction pattern at a fundamental wavelength of 3.3 μm together with the corresponding intensity profile. The experimentally measured (b) and modelled (c) intensity of the emitted SH signal as a function of the fundamental wavelength λ and diffraction angle θ outside the sample. In both cases the focal spot covers 10 domain walls. The solid lines represent Raman-Nath angles θRN, m for m = 23, 24 and 25 and the dashed lines represent the Čerenkov angle θC as a function of the fundamental wavelength λ.
Fig. 4
Fig. 4 (a) The experimental setup for observation of CSHG using a tightly focused fundamental beam: Ch - chopper, Ob1 - NA = 0.3 objective, Ob2 - NA = 0.65 objective, F -spatial filter, Ph - InGaAs photodiode. The inset shows the focusing configuration inside the OP-GaAs: the focal spot is much smaller than the period of the χ(2) nonlinearity modulation. (b) The intensity of the emitted Čerenkov signal recorded by translating the sample in the XZ plane. (c) and (d) show the Čerenkov intensity profiles along the X and Z axes, respectively.
Fig. 5
Fig. 5 A three-dimensional image of the OP-GaAs structure, obtained by scanning the fundamental beam inside the sample and recording the strength of the corresponding nonlinear Čerenkov diffraction at each position. The size of the box is 200×200×600 μm3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 2 ω ~ I ω 2 × S L 2 × S T 2 ,
θ C = cos 1 n 1 n 2 ,
θ RN , m = sin 1 m λ 2 n 2 Λ .

Metrics