Abstract

In this paper, an achromatic quarter waveplate scheme at terahertz frequency range is proposed. The waveplate is based on a silicon grating with large fill factor and period close to the wavelengths of the terahertz wave. Owing to the grating structure, the frequency dependence of waveplate is compensated. An achromatic QWP is fabricated and experimentally demonstrated to show an excellent wideband feature at the range of [0.47, 0.8] THz, which is more than 6 times wider than a conventional QWP working at single frequency 0.5 THz, by assuming ± 3% variance of phase retardation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate

Cho-Fan Hsieh, Chan-Shan Yang, Fang-Cih Shih, Ru-Pin Pan, and Ci-Ling Pan
Opt. Express 27(7) 9933-9940 (2019)

Near-infrared quarter-waveplate with near-unity polarization conversion efficiency based on silicon nanowire array

Yanmeng Dai, Hongbing Cai, Huaiyi Ding, Zhen Ning, Nan Pan, Hong Zhu, Qinwei Shi, and Xiaoping Wang
Opt. Express 23(7) 8929-8938 (2015)

Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals

Yun-Yun Ji, Fei Fan, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(10) 12852-12862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Han, G. C. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25(4), 242–244 (2000).
    [Crossref] [PubMed]
  2. Y. Gong and H. Dong, “Polarization Effect in Liver Tissue in Terahertz Band,” IRMMW-THz, T4D02–0043, (2009).
    [Crossref]
  3. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
    [Crossref]
  4. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
    [Crossref]
  5. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
    [PubMed]
  6. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref] [PubMed]
  7. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
    [Crossref] [PubMed]
  8. Y. Gong and H. Dong, “Terahertz waveplate made with transparency,” IRMMW-THz, Austraila, (2012).
  9. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
    [Crossref]
  10. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  11. Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
    [Crossref]
  12. Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
    [Crossref]
  13. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [Crossref] [PubMed]
  14. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
    [Crossref]
  15. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  16. P. Lalanne and M. Hutley, The optical properties of artificial media structured at a subwavelength scale, Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.
  17. P. Lalanne and J.-P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15(7), 1843–1851 (1998).
  18. I. Richter, P.-C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995).
    [Crossref] [PubMed]
  19. H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
    [Crossref]
  20. H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
    [Crossref]
  21. G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
    [Crossref]
  22. B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
    [Crossref]

2014 (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

2013 (3)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
[Crossref]

2011 (3)

2010 (5)

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[PubMed]

H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
[Crossref]

G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
[Crossref]

2009 (1)

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

2006 (2)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
[Crossref] [PubMed]

2003 (1)

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

2000 (1)

1998 (1)

1995 (1)

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Chen, C.-Y.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

Chen, Z. C.

Cho, G. C.

Chong, T. C.

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cumming, D. R. S.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

Cundiff, S. T.

Dong, H.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
[Crossref]

H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
[Crossref]

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Fainman, Y.

Gallot, G.

Gong, Y.

B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
[Crossref]

H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
[Crossref]

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Gong, Y. D.

Grant, J. P.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, N. R.

Han, P. Y.

Hong, M.

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Hong, M. H.

Hsieh, C.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Hugonin, J.-P.

Hui, D.

G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
[Crossref]

Jördens, C.

Khalid, A.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

Koch, M.

Lalanne, P.

Lim, C. S.

Lin, Y.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Ma, Y.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

Masson, J.-B.

Minamide, H.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Ng, B.

Notake, T.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Olivo, M.

H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
[Crossref]

Pan, C.-L.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

Pan, R.-P.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

Pan, Z. Y.

Paulose, V.

G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
[Crossref]

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Richter, I.

Saha, S. C.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18(12), 12168–12175 (2010).
[Crossref] [PubMed]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

Scheller, M.

Scherger, B.

Singh, R.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Sun, P.-C.

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

Vieweg, N.

Xu, F.

Xu, N.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

Yandong, G.

G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
[Crossref]

Zhang, B.

B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.-C.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497 (2003).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,”,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photon. Rev. 8(4), 626–632 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (2)

H. Dong, Y. Gong, and M. Olivo, “Measurement of Stokes parameters of terahertz radiation in terahertz time domain spectroscopy,” Microw. Opt. Technol. Lett. 52(10), 2319–2324 (2010).
[Crossref]

G. Yandong, D. Hui, and V. Paulose, “Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS,” Microw. Opt. Technol. Lett. 52(9), 2005–2007 (2010).
[Crossref]

Opt. Commun. (2)

H. Dong, Y. Gong, V. Paulose, and M. Hong, “Polarization State and Mueller Matrix Measurements in Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz Achromatic Quarter Wave Plate: Design, Fabrication, and Characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Opt. Eng. Lett. (1)

B. Zhang, Y. Gong, and H. Dong, “Thin form birefringence quarter-wave plate for lower terahertz range based on silicon grating,” Opt. Eng. Lett. 52(3), 030502 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (3)

Y. Gong and H. Dong, “Terahertz waveplate made with transparency,” IRMMW-THz, Austraila, (2012).

Y. Gong and H. Dong, “Polarization Effect in Liver Tissue in Terahertz Band,” IRMMW-THz, T4D02–0043, (2009).
[Crossref]

P. Lalanne and M. Hutley, The optical properties of artificial media structured at a subwavelength scale, Encyclopedia of Optical Engineering (Dekker, 2003), pp. 62–71.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Structure of the grating (L: period of grating; l1: width of silicon component; l2: width of air component; d: depth of grating; k: propagate direction of wave).
Fig. 2
Fig. 2 (a) relation between Δn∙R and R when fill factor is varying from 0.65 to 0.95; (b) the relationship between [R1, R2, Rr] and fill factor.
Fig. 3
Fig. 3 The microscope view of the fabricated grating: (a) cross section view; (b) top view. (c) The schematic figure of TDS measurement system.
Fig. 4
Fig. 4 Simulated Stokes parameter for the achromatic QWP (solid line) centered at 0.68 THz compared with that for a conventional 0.68 THz QWP (dot line).
Fig. 5
Fig. 5 Stokes parameter performance of a (a): proposed achromatic QWP; (b) conventional QWP at 0.5 THz.

Tables (1)

Tables Icon

Table 1 Specifications of wideband QWPs centered at various frequencies with fill factor 0.82.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ n TE0 2 = ηn 1 2 +( 1η ) n 2 2 n TM0 2 = ( η n 1 2 + 1η n 2 2 ) 1           
{ n TE 2 = n TE, 0 2 + 1 3 ( L λ πη( 1η )( n 1 2 n 2 2 ) ) 2 n TM 2 = n TM, 0 2 + 1 3 ( L λ πη( 1η )( 1 n 1 2 1 n 2 2 ) n TE, 0 n TM, 0 3 ) 2
R<1/ n 1 .
ΔP=2π dΔn λ = 2π c dΔnf= π 2
Δn= c 4df = λ 4d = L 4dR
Δnf= c 4d or ΔnR= L 4d
( 13% ) 4 L d ΔnR ( 1+3% ) 4 L d .
f R = f 2 f 1 = c L ( R 2 R 1 ).
f c = f 2 + f 1 2 = c 2L ( R 2 + R 1 ).
f R = f 2 f 1 = c L ( R 2 R 1 )=2 f c R 2 R 1 R 2 + R 1 =2 f c R r

Metrics