Abstract

We explored the use of the optically transparent semiconductor indium tin oxide (ITO) as an alternative to optically opaque metals for the fabrication of photonic structures in terahertz (THz) near-field studies. Using the polaritonics platform, we confirmed the ability to clearly image both bound and leaky electric fields underneath an ITO layer. We observed good agreement between measured waveguide dispersion and analytical theory of an asymmetric metal-clad planar waveguide with TE and TM polarizations. Further characterization of the ITO revealed that even moderately conductive samples provided sufficiently high quality factors for studying guided and leaky wave behaviors in individual transparent THz resonant structures such as antennas or split ring resonators. However, without higher conductive ITO, the limited reflection efficiency and high radiation damping measured here both diminish the applicability of ITO for high-reflecting, arrayed, or long path-length elements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Indium tin oxide overlayered waveguides for sensor applications

B. Jonathan Luff, James S. Wilkinson, and Guido Perrone
Appl. Opt. 36(27) 7066-7072 (1997)

Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces

Zhen Liu, Chia-Yi Huang, Hongwei Liu, Xinhai Zhang, and Chengkuo Lee
Opt. Express 21(5) 6519-6525 (2013)

THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide

Bin Zhang, Qiang Wu, Chongpei Pan, Ruobai Feng, Jingjun Xu, Cibo Lou, Xiaodong Wang, and Fuhua Yang
Opt. Express 23(12) 16042-16051 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
    [Crossref]
  2. C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
    [Crossref]
  3. C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
    [Crossref] [PubMed]
  4. C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).
  5. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9(12), 2179–2189 (1992).
    [Crossref]
  6. C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
    [Crossref] [PubMed]
  7. B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
    [Crossref]
  8. F. Blanchard, K. Ooi, T. Tanaka, A. Doi, and K. Tanaka, “Terahertz spectroscopy of the reactive and radiative near-field zones of split ring resonator,” Opt. Express 20(17), 19395–19403 (2012).
    [Crossref] [PubMed]
  9. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  10. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
    [Crossref]
  11. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [Crossref] [PubMed]
  12. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23(3), 391–403 (2006).
    [Crossref]
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  14. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
    [Crossref]
  15. C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
    [Crossref]
  16. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
    [Crossref]
  17. E. Cassedy and M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech. 9(3), 243–247 (1961).
    [Crossref]
  18. H. A. Haus and D. A. B. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22(2), 310–318 (1986).
    [Crossref]
  19. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
    [Crossref]
  20. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  21. D. Marcuse and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media-Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979).
    [Crossref]
  22. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: Analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
    [Crossref] [PubMed]
  23. D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
    [Crossref]
  24. D. B. Hall and C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44(5), 2271–2274 (1973).
    [Crossref]

2014 (1)

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

2013 (1)

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

2012 (4)

C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
[Crossref]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

F. Blanchard, K. Ooi, T. Tanaka, A. Doi, and K. Tanaka, “Terahertz spectroscopy of the reactive and radiative near-field zones of split ring resonator,” Opt. Express 20(17), 19395–19403 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (3)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

2008 (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2007 (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

2006 (1)

2002 (2)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

1992 (1)

1988 (1)

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

1986 (1)

H. A. Haus and D. A. B. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22(2), 310–318 (1986).
[Crossref]

1979 (1)

D. Marcuse and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media-Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979).
[Crossref]

1974 (1)

1973 (1)

D. B. Hall and C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44(5), 2271–2274 (1973).
[Crossref]

1961 (1)

E. Cassedy and M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech. 9(3), 243–247 (1961).
[Crossref]

Auston, D. H.

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

Averitt, R. D.

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Bauer, T.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Blanchard, F.

Cassedy, E.

E. Cassedy and M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech. 9(3), 243–247 (1961).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Cohn, M.

E. Cassedy and M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech. 9(3), 243–247 (1961).
[Crossref]

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Doi, A.

Dougherty, T. P.

Fan, K.

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Feurer, T.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Hall, D. B.

D. B. Hall and C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44(5), 2271–2274 (1973).
[Crossref]

Haus, H. A.

H. A. Haus and D. A. B. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22(2), 310–318 (1986).
[Crossref]

Hu, J.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Hultaker, A.

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kaminow, I. P.

D. Marcuse and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media-Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979).
[Crossref]

I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: Analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
[Crossref] [PubMed]

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kim, D. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kolb, J. S.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Lin, K.-H.

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Löffler, T.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Mammel, W. L.

Marcuse, D.

D. Marcuse and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media-Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979).
[Crossref]

Menyuk, C. R.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Miller, D. A. B.

H. A. Haus and D. A. B. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22(2), 310–318 (1986).
[Crossref]

Mohler, E.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Nelson, K. A.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
[Crossref]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
[Crossref] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. B 9(12), 2179–2189 (1992).
[Crossref]

Nuss, M. C.

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Ofori-Okai, B. K.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ooi, K.

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Pendry, J. B.

Pernisz, U. C.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Roskos, H. G.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

Ryan Tait, C.

C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
[Crossref]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Sivarajah, P.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

Smith, D. R.

Statz, E. R.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Strikwerda, A. C.

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Tanaka, K.

Tanaka, T.

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Teo, S. M.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Ward, D. R.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Weber, H. P.

Werley, C. A.

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
[Crossref]

C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
[Crossref] [PubMed]

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wiederrecht, G. P.

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wu, Q.

Xu, J.

Yang, C.

Yeh, C.

D. B. Hall and C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44(5), 2271–2274 (1973).
[Crossref]

Zhang, X.

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Am. J. Phys. (1)

C. A. Werley, K. A. Nelson, and C. Ryan Tait, “Direct visualization of terahertz electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80(1), 72–81 (2012).
[Crossref]

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle terahertz phonon-polariton waves in planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009).
[Crossref]

IEEE J. Quantum Electron. (3)

H. A. Haus and D. A. B. Miller, “Attenuation of cutoff modes and leaky modes of dielectric slab structures,” IEEE J. Quantum Electron. 22(2), 310–318 (1986).
[Crossref]

D. Marcuse and I. P. Kaminow, “Modes of a symmetric slab optical waveguide in birefringent media-Part II: Slab with coplanar optical axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979).
[Crossref]

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Cassedy and M. Cohn, “On the existence of leaky waves due to a line source above a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech. 9(3), 243–247 (1961).
[Crossref]

IEEE Trans. THz Sci. Tech. (Paris) (1)

C. A. Werley, S. M. Teo, B. K. Ofori-Okai, P. Sivarajah, and K. A. Nelson, “High-Resolution, Low-Noise Imaging in THz Polaritonics,” IEEE Trans. THz Sci. Tech. (Paris) 3(3), 239–247 (2013).

J. Appl. Phys. (2)

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92(4), 2210–2212 (2002).
[Crossref]

D. B. Hall and C. Yeh, “Leaky waves in a heteroepitaxial film,” J. Appl. Phys. 44(5), 2271–2274 (1973).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Nanotechnol. (1)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

B. K. Ofori-Okai, P. Sivarajah, C. A. Werley, S. M. Teo, and K. A. Nelson, “Direct experimental visualization of waves and band structure in 2D photonic crystal slabs,” New J. Phys. 16(5), 053003 (2014).
[Crossref]

Opt. Express (3)

Thin Solid Films (1)

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Supplementary Material (2)

» Media 1: AVI (2283 KB)     
» Media 2: AVI (3027 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

A schematic illustration of the polaritonics platform consisting of a thin slab of LiNbO3 that allows for the generation, control, and detection of THz waves. Focusing an ultrafast near-infrared pump pulse through the slab generates THz waves that are waveguided laterally down the slab.

Fig. 2
Fig. 2

(a) A raw optical image of an ITO-coated slab of LN (right side) that demonstrates the optical transparency of the ITO. The vertical dashed line represents the separation between uncoated LN (left) and the ITO-coated area (right). (b) A time series of selected images from Media 1 of a TE mode THz E-field that were collected using polarization gating imaging. A signal image, I(y,z,t), recorded at variable time t following THz field generation by the pump pulse was divided by a reference image, I0(y,z,t), recorded with the THz field absent and the signal modulation, [(I - I0)/I0](y,z,t), was determined to produce the images shown. The THz E-field is directly proportional to ΔI/I0. (c) THz E-field evolution as a function of space and time derived from averaging over the vertical dimension of a series of images, including those in (b).

Fig. 3
Fig. 3

Waveguide modes in a LN waveguide (thickness ℓ = 54 µm) with ITO deposited on one surface. Dispersion of air and bulk LN extraordinary (eo) and ordinary (o) waves are shown in solid yellow. Analytical guided solutions in dashed red are overlaid on the experimentally observed results where we assume an ideal metal cladding. The insets show cross-section views of the slab. (a) TE guided modes. Inset: calculated Ez-field profiles of the two lowest order TE modes at 1 THz. (b) TM guided (red-dashed) and leaky (white-dot-dashed) modes. Inset: calculated Ex and Ey-field components of the two lowest order bound TM modes at 1 THz.

Fig. 4
Fig. 4

2D space-time plot derived from Media 2 of a single-sided ITO-clad LN waveguide of thickness 30 μm, with the incident THz TE-polarized field tuned to 0.25 THz, well below the cutoff frequency at 0.50 THz. The contrast has been adjusted to saturate in the uncoated LN region such that unbound modes are more easily observed.

Fig. 5
Fig. 5

Reflection efficiency, decay lengths, and Q factors measured for the lowest TE waveguide mode in an asymmetric ITO-clad waveguide. (a) The frequency-dependent amplitude reflection coefficient for a TE-polarized THz E-field incident from an uncoated region of a 54-μm thick LN slab into an ITO-coated region. (b) The frequency-dependent 1/e decay length (green) and quality factor (Q) (blue) measured for the corresponding transmission and propagation in the ITO-coated region of the THz E-field amplitude.

Fig. 6
Fig. 6

(a) Asymmetric metal-clad waveguide experimental geometry with perfect conductor cladding (left), low-index, nl, cladding (right), and high-index, nh, anisotropic core. (b) Symmetric metal-clad waveguide experimental geometry with high-index core surrounded by perfect conductor cladding on both sides. ε and μ are the permittivity and permeability in each region.

Fig. 7
Fig. 7

(a) For an anisotropic system, the coordinate system for the derivations is defined as a function of θ, the angle between the z-axis and the optic c-axis of the crystal. (b) For TE waves, θ = 0°, such that the c-axis lies along the z-axis. (c) For TM waves, θ = 90°, such that the c-axis lies along the y-axis.

Fig. 8
Fig. 8

For the lowest three TE modes in an asymmetric metal-clad waveguide: (a) Ez-field profiles at 1.5 THz and (b) waveguide dispersion curves (solid lines) and bulk dispersion curves of LN core along the extraordinary axis and air cladding (dashed lines).

Fig. 9
Fig. 9

For the lowest three TE modes in a symmetric metal-clad waveguide: (a) Frequency-independent Ez-field profiles and (b) waveguide dispersion curves (solid lines) and bulk dispersion curve of LN core along the extraordinary axis (dashed line).

Fig. 10
Fig. 10

In an asymmetric metal-clad waveguide, the TM E-field profiles (Ex and Ey) at 1.5 THz of (a) m = 0 mode, (b) m = 1 mode, and (c) m = 2 mode. (d) The dispersion curves of the lowest three TM modes (solid lines) and bulk dispersion curves of LN core along the ordinary axis and air cladding (dashed lines).

Fig. 11
Fig. 11

In a symmetric metal-clad waveguide, the TM E-field profiles (Ex and Ey) of (a) m = 1 mode, (b) m = 2 mode, (c) m = 3 mode. (d) The dispersion curves of the lowest four TM modes (solid lines) and bulk dispersion curves of LN core along the ordinary axis and air cladding (dashed lines).

Fig. 12
Fig. 12

The mode power, |E(x)|2, along the transverse direction of a 1D planar waveguide for (a) the guided modes and (b) the leaky modes.

Fig. 13
Fig. 13

Leaky waves resemble Fabry-Perot cavity modes. (a) For an asymmetric metal-clad waveguide, the leaky waves resemble the odd order modes (m = 1,3,5,…) in a Fabry-Perot cavity (of twice the thickness) that have symmetric transverse field profiles. This schematic illustration demonstrates constructive interference between incident (solid-blue line) and reflected (dashed-red line) waves at the LN-air interface for the m = 1 mode. (b) In an asymmetric metal-clad waveguide, none of the leaky modes resemble the even order modes (m = 2,4,6,…) of a Fabry-Perot cavity, which have antisymmetric transverse field profiles. This schematic illustration shows purely destructive interference between the incident and reflected waves at the LN-air interface for the m = 2 mode.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

E (x,y,z,t)= E (x)exp[i(βyωt)],
Core, ordinary: κ o 2 + β 2 = ( ω n o c ) 2
Core, extraordinary: κ e 2 + β 2 ( cos 2 θ+ n e 2 n o 2 sin 2 θ )= ( ω n e c ) 2
Cladding: α 2 + β 2 = ( ω n c c ) 2 ,
h ± = k h ± × z ^ k h ± × z ^ = 1 β 2 + κ 2 [ β ±κ 0 ]= c ω n h [ β ±κ 0 ],
l ± = k l ± × z ^ k l ± × z ^ = 1 β 2 α 2 [ β ±iα 0 ]= c ω n l [ β ±iα 0 ].
Ideal metal: E (x)=0
Core: E (x)= A 1 z ^ exp[iκx]+ A 2 z ^ exp[iκx]+ A 3 h + exp[iκx]+ A 4 h exp[iκx]
Cladding: E (x)= B 1 z ^ exp[α(x)]+ B 2 z ^ exp[α(x)] + B 3 l exp[α(x)]+ B 4 l + exp[α(x)],
Ideal metal: E (x)=0
Core: E (x)= A 1 z ^ exp[iκx]+ A 2 z ^ exp[iκx]
Cladding: E (x)=B z ^ exp[α(x)]
× E =μ H t =iω μ 0 H H = i ω μ 0 × E
H = i ω μ 0 [ i x ^ β E z + y ^ E z x + z ^ ( iβ E x E y x ) ].
E z,clad = E z,core
E z,clad x = E z,core x
E y,clad = E y,core
iβ E x,clad E y,clad x =iβ E x,core E y,core x
[ sin(κ) 1 κcos(κ) α ][ A B ]=0
tan(κ+mπ)=κ/α,
ν c, lowest = c κ lowest 2π n e 1+ tan 2 θ c .
E (x)= z ^ E 0 | 0 sin(κx) sin(κ)exp[α(x)] x<0 0x x>
Asin(κ)=0, when κ=mπ
E (x)= z ^ E 0 | 0 sin(κx) 0 x<0 0x x>0
ν c, lowest = c 2 n e .
E (x)=0
Core: E (x)= A 1 e + exp[i κ e x]+ A 2 e exp[i κ e x] + A 3 o + exp[i κ o x]+ A 4 o exp[i κ o x]
Cladding: E (x)= B 1 v exp[α(x)]+ B 2 v + exp[α(x)] + B 3 h exp[α(x)]+ B 4 h + exp[α(x)],
c =[ 0 sinθ cosθ ] and k =[ ± k x β 0 ],
D = D 0 β 2 + κ e 2 [ β κ e 0 ]
ε ¯ ¯ =[ ε o 0 0 0 ε o 0 0 0 ε e ]
R ¯ ¯ (θ)=[ 1 0 0 0 cosθ sinθ 0 sinθ cosθ ]
ε' ¯ ¯ =[ ε o 0 0 0 ε e 0 0 0 ε o ]
e ± 1 β 2 + κ e 2 [ β / ε o κ e / ε e 0 ] and o ± 1 κ o [ 0 0 ± κ o ]=[ 0 0 1 ]
z ^ =[ 0 0 1 ] and l ± [ β ±iα 0 ].
E (x)=0
E (x)= A 1 e + exp[i κ e x]+ A 2 e exp[i κ e x]
E (x)=B l + exp[α(x)]
[ κ e ε e sin( κ e ) α cos( κ e ) 1 ][ A B ]=0
tan( κ e +mπ)= α ε e κ e ,
E (x) D 0 { i y ^ [ 0 ( κ e / ε e )sin( κ e x) ( κ e / ε e )sin( κ e )exp[α(x)] ] x ^ [ 0 ( β/ ε o )cos( κ e x) ( β κ e / ε e α )sin( κ e )exp[α(x)] ] } x<0 0x x>
Asin( κ e )=0, when κ e =mπ
E (x)= D 0 β 2 + κ e 2 { i y ^ ( κ e ε e sin( κ e x) ) x ^ ( β ε o cos( κ e x) ) } 0x
E (x)= x ^ D 0 / ε o = x ^ E 0
H (x)= z ^ β ω μ 0 E 0 .
m(λ/2)=L,
m(λ/2)=2,

Metrics