Abstract

This paper evaluates the opportunities for using materials other than silica for optical frequency comb generation in whispering gallery mode microsphere resonators. Different materials are shown to satisfy the requirement of dispersion compensation in interesting spectral regions such as the visible or mid-infrared and for smaller microspheres. This paper also analyses the prospects of comb generation in microspheres within aqueous solution for potential use in applications such as biosensing. It is predicted that to achieve comb generation with microspheres in aqueous solution the visible low-loss wavelength window of water needs to be exploited. This is because efficient comb generation necessitates ultra-high Q-factors, which are only possible for cavities with low absorption of the evanescent field outside the cavity. This paper explores the figure of merit for nonlinear interaction efficiency and the potential for dispersion compensation at unique wavelengths for a host of microsphere materials and dimensions and in different surroundings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion analysis of whispering gallery mode microbubble resonators

Nicolas Riesen, Wen Qi Zhang, and Tanya M. Monro
Opt. Express 24(8) 8832-8847 (2016)

Dispersion engineering of a microsphere via multi-layer coating

Xueying Jin, Jing Wang, Mengyu Wang, Yongchao Dong, Fei Li, and Keyi Wang
Appl. Opt. 56(28) 8023-8028 (2017)

Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators

Ming Li, Xiang Wu, Liying Liu, and Lei Xu
Opt. Express 21(14) 16908-16913 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
    [Crossref]
  2. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Combs: Principle, Operation, and Applications (Springer, 2005).
  3. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  4. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [Crossref] [PubMed]
  5. K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
    [Crossref] [PubMed]
  6. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
    [Crossref]
  7. T. J. Kippenberg, “Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities,” California Institute of Technology, PhD Thesis (2004).
  8. P. Del’Haye, “Optical frequency comb generation in monolithic microresonators,” Ludwig Maximilian University, Munich, PhD Thesis (2011).
  9. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009).
    [Crossref] [PubMed]
  10. M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
    [Crossref] [PubMed]
  11. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23(7), 1381–1389 (2006).
    [Crossref]
  12. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
    [Crossref]
  13. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  14. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  15. Y. K. Chembo, “Quantum correlations, entanglement, and squeezed states of light in Kerr optical frequency combs,” http://arXiv:1412.5700v1 (2014).
  16. R. Boyd, Nonlinear Optics (Academic, 2008).
  17. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [Crossref]
  18. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [PubMed]
  19. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [Crossref]
  20. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  21. A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  22. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
    [Crossref]
  23. J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
    [Crossref]
  24. H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V, T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3(9), 1488–1503 (2013).
    [Crossref]
  25. Schott (Optical Glass Data Sheets, 2012). http://refractiveindex.info/download/data/2012/schott_optical_glass_collection_datasheets_dec_2012_us.pdf
  26. M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
    [Crossref]
  27. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [Crossref]
  28. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [Crossref] [PubMed]
  29. X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
    [Crossref]
  30. P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
    [Crossref]
  31. T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
    [Crossref]
  32. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
    [Crossref] [PubMed]
  33. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
    [Crossref]
  34. T. Ioppolo, U. K. Ayaz, and M. V. Ötugen, “High-resolution whispering gallery mode force micro-sensor based on polymeric spheres,” in AIAA Aerospace Sciences Meeting, Orlando, Florida, 2009.
    [Crossref]
  35. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  36. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [Crossref]
  37. O. Arcizet, A. Schliesser, P. Del’Haye, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation in monolithic microresonators,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC, 2009).
  38. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
    [Crossref]
  39. M. J. Dodge, “Refractive Index,” in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, 21–47 (CRC, 1986).
  40. R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques (Academic, 2009).
  41. D. J. Segelstein, “The complex refractive index of water,” University of Missouri, M.S. Thesis (1981).
  42. M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19(8), 7603–7615 (2011).
    [Crossref] [PubMed]
  43. Thorlabs (Polycarbonate, Cyclic-Olefin, Acrylic Transmission, 2014). www.thorlabs.com
  44. I. S. P. Optics, (Transmission Curve Data Sheets, 2014). www.ispoptics.com

2015 (1)

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

2014 (1)

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

2013 (4)

2012 (1)

2011 (3)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19(8), 7603–7615 (2011).
[Crossref] [PubMed]

2010 (1)

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

2009 (2)

2008 (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

2007 (4)

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

2006 (2)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23(7), 1381–1389 (2006).
[Crossref]

2005 (2)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

2002 (1)

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

1999 (1)

1998 (1)

1996 (1)

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

1981 (2)

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

Afshar V, S.

Agha, I. H.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Armani, A. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Arnold, S.

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23(7), 1381–1389 (2006).
[Crossref]

Baggett, B. K.

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Borri, P.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Brambilla, G.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Briggs, D.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Broaddus, D. H.

Chembo, Y. K.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

Chormaic, S. N.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Descour, M. R.

Dhasmana, N.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Farrell, G.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Feng, X.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Foster, M. A.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

François, A.

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
[Crossref] [PubMed]

Fujiki, M.

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

Furniss, D.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Gaeta, A. L.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Haus, H. A.

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hoffmann, P.

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Ilchenko, V. S.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
[Crossref] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Ji, H.

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Jiang, S.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Kaino, T.

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kimble, H. J.

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Kossakovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Kuwata-Gonokami, M.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Kyrish, M.

Laine, J.-P.

Langbein, W.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Lee, T.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

Li, M.

Lipson, M.

Little, B. E.

Liu, L.

Loh, W.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Lutti, J.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Mabuchi, H.

Maleki, L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Manchee, C. P. K.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Manzani, D.

McFarlane, S.

Meldrum, A.

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Monro, T. M.

Munasinghe, H. T.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Murugan, G. S.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Nara, S.

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20(17), 2886–2888 (1981).
[Crossref] [PubMed]

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

O’Donnell, M. D.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Oikawa, S.

Okawachi, Y.

I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17(18), 16209–16215 (2009).
[Crossref] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Peng, X.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Peyghambarian, N.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Riesen, N.

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Robinson, J. T.

Rowland, K. J.

Savchenkov, A. A.

Schiele, C.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Seddon, A. B.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Semenova, Y.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Sharping, J. E.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Silverstone, J. W.

Smith, E. F.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Song, F.

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Streed, E. W.

Teraoka, I.

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23(7), 1381–1389 (2006).
[Crossref]

Tikhomirov, V. K.

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

Tkaczyk, T. S.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Utzinger, U.

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Vahid, S. A.

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Vernooy, D. W.

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Wang, P.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Ward, J. M.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Wilkinson, J. S.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Winterstein-Beckmann, A.

Wondraczek, L.

Wu, Q.

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

Wu, X.

Xu, L.

Yu, N.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. François, N. Riesen, H. Ji, S. A. Vahid, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson, and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Appl. Phys. Lett. 98(18), 181105 (2011).
[Crossref]

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

J. Appl. Phys. (1)

T. Kaino, M. Fujiki, and S. Nara, “Low‐loss polystyrene core‐optical fibers,” J. Appl. Phys. 52(12), 7061–7063 (1981).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Res. (1)

M. D. O’Donnell, D. Furniss, V. K. Tikhomirov, D. Briggs, E. F. Smith, and A. B. Seddon, “Surface properties of tellurite and fluorotellurite glasses,” J. Mater. Res. 22(06), 1673–1684 (2007).
[Crossref]

J. Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

J. Opt. Soc. Am. B. (1)

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B. 23(7), 1381–1389 (2006).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–289 (1980).
[Crossref]

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Opt. Eng. (1)

X. Peng, F. Song, M. Kuwata-Gonokami, S. Jiang, and N. Peyghambarian, “Er3+-doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics,” Opt. Eng. 44, 034202 (2005).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[Crossref]

Phys. Rev. A (2)

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82(3), 033801 (2010).
[Crossref]

Proc. SPIE (1)

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Other (13)

M. J. Dodge, “Refractive Index,” in Handbook of Laser Science and Technology, Volume IV, Optical Materials: Part 2, 21–47 (CRC, 1986).

R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques (Academic, 2009).

D. J. Segelstein, “The complex refractive index of water,” University of Missouri, M.S. Thesis (1981).

Thorlabs (Polycarbonate, Cyclic-Olefin, Acrylic Transmission, 2014). www.thorlabs.com

I. S. P. Optics, (Transmission Curve Data Sheets, 2014). www.ispoptics.com

O. Arcizet, A. Schliesser, P. Del’Haye, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation in monolithic microresonators,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC, 2009).

T. Ioppolo, U. K. Ayaz, and M. V. Ötugen, “High-resolution whispering gallery mode force micro-sensor based on polymeric spheres,” in AIAA Aerospace Sciences Meeting, Orlando, Florida, 2009.
[Crossref]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Combs: Principle, Operation, and Applications (Springer, 2005).

T. J. Kippenberg, “Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities,” California Institute of Technology, PhD Thesis (2004).

P. Del’Haye, “Optical frequency comb generation in monolithic microresonators,” Ludwig Maximilian University, Munich, PhD Thesis (2011).

Y. K. Chembo, “Quantum correlations, entanglement, and squeezed states of light in Kerr optical frequency combs,” http://arXiv:1412.5700v1 (2014).

R. Boyd, Nonlinear Optics (Academic, 2008).

Schott (Optical Glass Data Sheets, 2012). http://refractiveindex.info/download/data/2012/schott_optical_glass_collection_datasheets_dec_2012_us.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The effect of normal (ΔFSR < 0) and anomalous (ΔFSR > 0) dispersion on the modes of a microresonator. In the case of zero dispersion, the resonances match the equidistant comb lines.
Fig. 2
Fig. 2 (a) The zero dispersion wavelength as a function of diameter for silica microspheres in air and water. (b) The spectral absorption of silica, and (inset) water [40,41].
Fig. 3
Fig. 3 (a) The zero dispersion wavelength as a function of diameter for various soft glass microspheres in air and water and (b) the absorption spectra of the glasses [24,25].
Fig. 4
Fig. 4 (a) The zero dispersion wavelength as a function of diameter for various polymer microspheres in air and water and (b) the absorption spectra [42,43]. The vertical axes are identical for all plots in (b).
Fig. 5
Fig. 5 (a) The zero dispersion wavelength as a function of diameter for several microspheres of crystalline materials, in air and water and (b) the absorption spectra [44]. These materials present opportunities for mid-infrared comb generation.
Fig. 6
Fig. 6 (a) The zero dispersion wavelength as a function of refractive index for the (a) Glasses and (b) Polymers. This is shown for several different microsphere diameters. The nonlinear indices as given by Miller’s Rule are shown in the insets [17].
Fig. 7
Fig. 7 (a) The dependence of the nonlinear figure of merit Q2/V [1/µm3] on diameter and wavelength for (a) silica, (b) F2 glass, (c) tellurite (TZNL), (d) MgF2, (e) polystyrene and (f) PMMA microspheres in air. The RMS size and correlation length of the surface in-homogeneities modelled were σ = 0.3 nm and L = 3 nm, respectively. The absorption data shown in previous figures was used to determine Qabs.

Tables (1)

Tables Icon

Table 1 Exponential Fits of ZDW as a function of Diameter.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n p ψ l ' ( n k 0 ρ ) ψ l ( n k 0 ρ ) = n o u t p χ l ' ( n o u t k 0 ρ ) χ l ( n o u t k 0 ρ )
Δ v v n 2 n I
V e f f 3.4 π 3 / 2 ( λ / 2 π n ) 3 l 11 / 6 l m + 1
Q g e o 1 2 ( l + 1 2 2 1 / 3 ( l + 1 / 2 ) 1 / 3 t q 0 f 1 2 k f 2 1 ) f 2 k 1 ( f 2 1 ) 1 / 2 e 2 T q l
T q l = ( l + 1 2 ) ( cos h 1 ( q ) 1 1 f 2 ) + 2 1 / 3 ( l + 1 / 2 ) 1 / 3 t q 0 1 1 f 2
Q m a t 1 + Q s s 1 α λ 2 π n e f f + π 2 σ 2 L λ 2 ρ
λ Z D = A e B d + C
P min n 2 n 2 V Q 2

Metrics