Abstract

Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metal-semiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device design due to the finite choice of materials. In this work we theoretically consider the metal-insulator-semiconductor heterojunction as a candidate for plasmonic hot-carrier photodetection and solar cells. The presence of the insulating layer can significantly reduce the dark current, resulting in increased device performance with predicted solar power conversion efficiencies up to 9%. For photodetection, the sensitivity can be extended well into the infrared by a judicious choice of the insulating layer, with up to 300-fold expected enhancement in detectivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonically enhanced hot electron based photovoltaic device

Fatih B. Atar, Enes Battal, Levent E. Aygun, Bihter Daglar, Mehmet Bayindir, and Ali K. Okyay
Opt. Express 21(6) 7196-7201 (2013)

Materials for hot carrier plasmonics [Invited]

Tao Gong and Jeremy N. Munday
Opt. Mater. Express 5(11) 2501-2512 (2015)

Near-infrared metal-semiconductor-metal photodetector based on semi-insulating GaAs and interdigital electrodes

A. I. Nusir, A. M. Hill, M. O. Manasreh, and J. B. Herzog
Photon. Res. 3(1) 1-4 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  2. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  3. A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
    [Crossref]
  4. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  5. G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
    [Crossref] [PubMed]
  6. Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun. (Camb.) 2004(16), 1810–1811 (2004).
    [Crossref] [PubMed]
  7. E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
    [Crossref] [PubMed]
  8. T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
    [Crossref]
  9. C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
    [Crossref] [PubMed]
  10. Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
    [Crossref] [PubMed]
  11. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
    [Crossref] [PubMed]
  12. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
    [Crossref] [PubMed]
  13. Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99(18), 182110 (2011).
    [Crossref]
  14. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
    [Crossref] [PubMed]
  15. F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
    [Crossref] [PubMed]
  16. S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
    [Crossref] [PubMed]
  17. H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
    [Crossref]
  18. F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
    [Crossref] [PubMed]
  19. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  20. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref] [PubMed]
  21. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [PubMed]
  22. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [Crossref] [PubMed]
  23. F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
    [Crossref] [PubMed]
  24. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  25. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
    [Crossref] [PubMed]
  26. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
    [Crossref] [PubMed]
  27. A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
    [Crossref]
  28. F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Multiband tunable large area hot carrier plasmonic-crystal photodetectors,” arXiv:1406.2875 (2014).
  29. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  30. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
    [Crossref]
  31. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
    [Crossref]
  32. C. Berglund and W. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136(4A), A1030–A1044 (1964).
    [Crossref]
  33. A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
    [Crossref]
  34. G. Mahan, “Theory of photoemission in simple metals,” Phys. Rev. B 2(11), 4334–4350 (1970).
    [Crossref]
  35. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, 1981).
  36. J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
    [Crossref]
  37. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (1982).
  38. M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
    [Crossref] [PubMed]

2015 (2)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
[Crossref] [PubMed]

2014 (8)

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

2013 (6)

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

2012 (4)

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

2011 (7)

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99(18), 182110 (2011).
[Crossref]

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

2010 (2)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
[Crossref] [PubMed]

2009 (2)

E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
[Crossref] [PubMed]

T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
[Crossref]

2004 (1)

Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun. (Camb.) 2004(16), 1810–1811 (2004).
[Crossref] [PubMed]

1970 (1)

G. Mahan, “Theory of photoemission in simple metals,” Phys. Rev. B 2(11), 4334–4350 (1970).
[Crossref]

1967 (1)

J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
[Crossref]

1964 (1)

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136(4A), A1030–A1044 (1964).
[Crossref]

Abe, R.

E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
[Crossref] [PubMed]

Atwater, H. A.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Bach, U.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Berglund, C.

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136(4A), A1030–A1044 (1964).
[Crossref]

Berini, P.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Bernechea, M.

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Brick, D.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

de Arquer, F. P. G.

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Demir, H. V.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

García, H.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

García de Arquer, F. P.

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Govorov, A. O.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Greiner, M. T.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Gun’ko, Y. K.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hartland, G. V.

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

Helander, M. G.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Hernandez-Sosa, G.

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Hwang, E.

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

Ide, Y.

Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
[Crossref] [PubMed]

Ji, X.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Juárez, R.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Jung, C. H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Karg, M.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Konstantatos, G.

F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Kowalska, E.

E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
[Crossref] [PubMed]

Krämer, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Kufer, D.

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Lee, G. P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Lee, H.

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

Lee, J.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Lee, W.-R.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Lee, Y. K.

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Leenheer, A. J.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Lewis, N. S.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Lu, Z.-H.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Mahan, G.

G. Mahan, “Theory of photoemission in simple metals,” Phys. Rev. B 2(11), 4334–4350 (1970).
[Crossref]

Manjavacas, A.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Marino, T.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Martinez, L.

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Matsuoka, M.

Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Mihi, A.

F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Molinari, R.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Moses, D.

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Moskovits, M.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Mubeen, S.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Mulvaney, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Narang, P.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Ogawa, M.

Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
[Crossref] [PubMed]

Ohtani, B.

E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
[Crossref] [PubMed]

Osmond, J.

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Park, J.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Park, J. Y.

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Pelayo García de Arquer, F.

F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
[Crossref] [PubMed]

Qiu, J.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Rath, A. K.

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Reineck, P.

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Seo, H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Shen, Q.

T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
[Crossref]

Shewchun, J.

J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
[Crossref]

Silva, C. G.

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Singh, N.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Somorjai, G. A.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Spicer, W.

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136(4A), A1030–A1044 (1964).
[Crossref]

Stucky, G. D.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Takahashi, Y.

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99(18), 182110 (2011).
[Crossref]

Tang, W.-M.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Tatsuma, T.

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99(18), 182110 (2011).
[Crossref]

Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun. (Camb.) 2004(16), 1810–1811 (2004).
[Crossref] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun. (Camb.) 2004(16), 1810–1811 (2004).
[Crossref] [PubMed]

Toyoda, T.

T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
[Crossref]

Tsugawa, S.

T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Wang, F.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Wang, Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Wang, Z.-B.

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Warfield, G.

J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
[Crossref]

Waxman, A.

J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
[Crossref]

White, T. P.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Zhang, H.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

ACS Nano (3)

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, and U. Bach, “A solid-state plasmonic solar cell via metal nanoparticle self-assembly,” Adv. Mater. 24(35), 4750–4755 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99(18), 182110 (2011).
[Crossref]

Chem. Commun. (Camb.) (2)

Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun. (Camb.) 2004(16), 1810–1811 (2004).
[Crossref] [PubMed]

E. Kowalska, R. Abe, and B. Ohtani, “Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis,” Chem. Commun. (Camb.) 2009(2), 241–243 (2009).
[Crossref] [PubMed]

Chem. Rev. (1)

G. V. Hartland, “Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111(6), 3858–3887 (2011).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

C. G. Silva, R. Juárez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” J. Am. Chem. Soc. 133(3), 595–602 (2011).
[Crossref] [PubMed]

Y. Ide, M. Matsuoka, and M. Ogawa, “Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate,” J. Am. Chem. Soc. 132(47), 16762–16764 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (2)

T. Toyoda, S. Tsugawa, and Q. Shen, “Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics,” J. Appl. Phys. 105(3), 034314 (2009).
[Crossref]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

J. Phys. Chem. C (2)

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO 2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118(11), 5650–5656 (2014).
[Crossref]

Nano Lett. (6)

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits, “Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers,” Nano Lett. 11(12), 5548–5552 (2011).
[Crossref] [PubMed]

Nano Today (1)

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

Nanoscale (1)

F. Pelayo García de Arquer, A. Mihi, and G. Konstantatos, “Molecular interfaces for plasmonic hot electron photovoltaics,” Nanoscale 7(6), 2281–2288 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, “Universal energy-level alignment of molecules on metal oxides,” Nat. Mater. 11(1), 76–81 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

A. K. Rath, M. Bernechea, L. Martinez, F. P. G. de Arquer, J. Osmond, and G. Konstantatos, “Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells,” Nat. Photonics 6(8), 529–534 (2012).
[Crossref]

Phys. Rev. (1)

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136(4A), A1030–A1044 (1964).
[Crossref]

Phys. Rev. B (1)

G. Mahan, “Theory of photoemission in simple metals,” Phys. Rev. B 2(11), 4334–4350 (1970).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Solid-State Electron. (1)

J. Shewchun, A. Waxman, and G. Warfield, “Tunneling in MIS structures—I,” Solid-State Electron. 10(12), 1165–1186 (1967).
[Crossref]

Other (3)

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (1982).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, 1981).

F. P. G. de Arquer, A. Mihi, and G. Konstantatos, “Multiband tunable large area hot carrier plasmonic-crystal photodetectors,” arXiv:1406.2875 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Metal-Semiconductor hot-electron plasmonic solar cells. (a) Metal, semiconductor and transparent conductive oxide (TCO) layer before contact. (b) Situation after contact, where a Schottky barrier of height Φb and a buit-in field are established. Plasmonic hot-electrons can be collected when emitted over/through the barrier. (c) Dark current, photocurrent and total current under simulated solar AM 1.5G illumination for a TiO2-Au device.

Fig. 2
Fig. 2

Photovoltaic figures of merit of MS hot-electron plasmonic solar cells for a TiO2 semiconductor when the barrier is modified. (a) Open-circuit voltage, (b) fill-factor, (c) short-circuit current and (d) power-conversion efficiency (PCE). A maximum PCE of 8% is obtained for a 1.1 eV barrier.

Fig. 3
Fig. 3

Photovoltaic figures of merit of MS hot-electron plasmonic solar cells for a TiO2 semiconductor when the barrier is modified. (a) Open-circuit voltage, (b) fill-factor, (c) short-circuit current and (d) power-conversion efficiency (PCE). A maximum PCE of 8% is obtained for a 1.1 eV barrier.

Fig. 4
Fig. 4

Jsc, Voc, FF and PCE as a function of d and χins for a TiO2-insulator-Ag junction. (a) Short-circuit current, (b) fill-factor, (c) open-circuit voltage and (d) PCE. An increase from 2.3% (MS configuration) to 8.5% can be obtained by an appropriate choice of the insulating material thickness and electron affinity.

Fig. 5
Fig. 5

PCE for the MS architecture and the optimized MIS configuration. A maximum PCE of 9% is obtained for the best case scenario. Given a metal-semiconductor choice, the performance can be significantly increased, especially for low barriers.

Fig. 6
Fig. 6

EQE, R and D* as a function of Schottky barrier height Φb and wavelength. From left to right, Va = 0V, Va = −2V and Va = −4V. The shot-noise limited detectivity is determined by the trade-off between R, which linearly increases with lower barriers, and dark current, that exponentially increases with barrier lowering.

Fig. 7
Fig. 7

Insulating barrier to leverage photodetector performance. EQE and D* (shot-noise-limited) for a given Ef - χsc difference of 0.3 eV (which would correspond to Φb = 0.3 eV in a MS configuration) and different insulator thicknesses and electron affinity. The presence of the insulator allows for increased D* for a given metal and semiconductor, due to the associated dark current reduction. From left to right, d = 0.2 nm, d = 0.5 nm, and d = 1 nm. White dashed lines join the points with D* = 1011 Jones, corresponding to the MS reference.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P C E = ( J p h + J d ) V P i n c
J p h ( V ) = q φ i n c η p h p l η p l h e η t η i n j ( V ) d λ
J t h ( V ) = A * T 2 exp ( ϕ b / q V t ) [ exp ( V / V t ) 1 ]
J d = J t h + J d i f f
J t h = P h A * T 2 exp ( ϕ b / V t ) [ exp ( V s c / V ) 1 ]
J d i f f = q D h n i 2 N d L h [ exp ( V s c / V t ) 1 ]
η i n j ( E , V ) = exp ( 2 8 π 2 m h 2 ) 0 d ( E , V ) E E ( x ) d x )
R = I p h P i n c
D * = R A d B S n

Metrics