Abstract

We report the achievement of colliding pulse mode-locked (CPM) regimes on a novel on-chip mode locked laser diode (OCCP-MLLD). The advantage of the resonator structure that we present is that the end-mirrors are defined through multimode interference reflectors (MIRs), which provide precise control of the cavity length avoiding the need for cleaved facets. This simplifies positioning the saturable absorber at the center of the resonator to achieve the colliding pulse mode-locked regime and double the repetition rate, reaching the millimeter wave frequency range. An additional advantage is that the pulsed output is delivered within the Photonic Integrated Circuit chip for further processing (i.e. modulation). We demonstrate a colliding pulse passive mode locked regime with pulse widths below a picosecond (Δτ = 0.64 ps), timing jitter σT = 75 fs and amplitude noise NAM = 0.012 dBc. The samples were fabricated in a generic InP foundry service through multi-project wafer (MPW) runs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip mode-locked laser diode structure using multimode interference reflectors

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero
Photon. Res. 3(1) 15-18 (2015)

Monolithically integrated tunable mode-locked laser diode source with individual pulse selection and post-amplification

X. Guo, A. H. Quarterman, A. Wonfor, R. V. Penty, and I. H. White
Opt. Lett. 41(20) 4835-4838 (2016)

1  GHz InP on-chip monolithic extended cavity colliding-pulse mode-locked laser

R. Guzmán, C. Gordon, L. Orbe, and G. Carpintero
Opt. Lett. 42(12) 2318-2321 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
    [Crossref]
  2. S. Arahira and Y. Ogawa, “480-GHz Subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode,” IEEE Photonics Technol. Lett. 14(4), 537–539 (2002).
    [Crossref]
  3. Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
    [Crossref]
  4. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
    [Crossref]
  5. A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).
  6. E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” Proc. SPIE 6124, 612419 (2006).
    [Crossref]
  7. M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “A Generic Foundry Model for InP-based Photonic ICs," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3E.3.
  8. L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
    [Crossref]
  9. J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO, 2012), CW1N.7.
    [Crossref]
  10. H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
    [Crossref]
  11. J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86 GHz,” Appl. Phys. Lett. 63(12), 1598–1600 (1993).
    [Crossref]
  12. M. S. Tahvili, Y. Barbarin, X. J. Leijtens, T. de Vries, E. Smalbrugge, J. Bolk, H. P. Ambrosius, M. K. Smit, and E. A. Bente, “Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers,” Opt. Lett. 36(13), 2462–2464 (2011).
    [Crossref] [PubMed]
  13. H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. A. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThO2.
  14. S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode-locked InAs/InP quantum dash based DBR laser monolithically integrated with a semiconductor optical amplifier,” in 25th International Conference on Indium Phosphide and Related Materials (IPRM, 2013), pp 1-2.
    [Crossref]
  15. L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
    [Crossref]
  16. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  17. P. Muñoz, R. García-Olcina, C. Habib, L. R. Chen, X. J. M. Leijtens, T. de Vries, D. Robbins, and J. Capmany, “Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP,” Opt. Express 19(14), 13540–13550 (2011).
    [Crossref] [PubMed]
  18. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: A new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
    [Crossref]
  19. J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), and 23rd International Conference on Indium Phosphide and Related Materials, (2011), pp. 1–4.
  20. C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
    [Crossref]
  21. G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
    [Crossref]
  22. K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
    [Crossref]
  23. H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
    [Crossref]
  24. The pure play InP Photonics foundry, “SMART Photonics”, http://www.smartphotonics.nl/ .
  25. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
    [Crossref]
  26. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
    [Crossref] [PubMed]
  27. K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
    [Crossref]
  28. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys., A Mater. Sci. Process. 39, 201–217 (1986).
  29. K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
    [Crossref]

2015 (1)

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

2013 (3)

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
[Crossref]

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: A new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
[Crossref]

2011 (3)

2010 (1)

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

2009 (1)

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

2008 (1)

2006 (1)

E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” Proc. SPIE 6124, 612419 (2006).
[Crossref]

2004 (3)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

2002 (2)

H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
[Crossref]

S. Arahira and Y. Ogawa, “480-GHz Subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode,” IEEE Photonics Technol. Lett. 14(4), 537–539 (2002).
[Crossref]

2000 (1)

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

1996 (1)

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
[Crossref]

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1993 (1)

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86 GHz,” Appl. Phys. Lett. 63(12), 1598–1600 (1993).
[Crossref]

1991 (1)

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys., A Mater. Sci. Process. 39, 201–217 (1986).

1980 (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Akrout, A.

Ambrosius, H. P.

Angelo, C.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

Arahira, S.

S. Arahira and Y. Ogawa, “480-GHz Subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode,” IEEE Photonics Technol. Lett. 14(4), 537–539 (2002).
[Crossref]

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
[Crossref]

Aubin, G.

Avrutin, E.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

Babiel, S.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Bao, H. C.

H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
[Crossref]

Barbarin, Y.

Bente, E.

E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” Proc. SPIE 6124, 612419 (2006).
[Crossref]

Bente, E. A.

Birkedal, D.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

Bolk, J.

Bryce, A. C.

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
[Crossref]

Cannard, P. J.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Capmany, J.

Carpintero, G.

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

Charbonnier, B.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Chen, L. R.

Chen, Y. K.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Chin, M. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Christiansen, L. J.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

de Vries, T.

Duan, G. H.

Dutta, N. K.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

El-Aasser, M.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

Fan, H.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

Fedderwitz, S.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

García-Olcina, R.

Gordón, C.

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

Guzmán, R.

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

Habib, C.

Haji, M.

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
[Crossref]

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
[Crossref]

Hall, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Hanberg, J.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

Hohimer, J. P.

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86 GHz,” Appl. Phys. Lett. 63(12), 1598–1600 (1993).
[Crossref]

Hou, L.

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
[Crossref]

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
[Crossref]

Hvam, J. M.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

Ironside, C. N.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

Javaloyes, J.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

Kenney-Wallace, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Kleijn, E.

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: A new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
[Crossref]

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), and 23rd International Conference on Indium Phosphide and Related Materials, (2011), pp. 1–4.

Koren, U.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

Larsson, D.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

Leijtens, X.

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

Leijtens, X. J.

Leijtens, X. J. M.

Lelarge, F.

Liu, H. F.

H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
[Crossref]

Logan, R. A.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Marsh, J. H.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
[Crossref]

Martinez, A.

Matsui, Y.

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
[Crossref]

Merghem, K.

Moodie, D.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Moreau, G.

Mørk, J.

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

Muñoz, P.

Ogawa, Y.

S. Arahira and Y. Ogawa, “480-GHz Subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode,” IEEE Photonics Technol. Lett. 14(4), 537–539 (2002).
[Crossref]

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
[Crossref]

Oxenløwe, L. K.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

Pavlovic, L.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Penty, R. V.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Piccirilli, A. B.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

Ponnampalam, L.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Qiu, B.

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
[Crossref]

Rae, A. R.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Ramdane, A.

Renaud, C. C.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Robbins, D.

Rogers, D.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Rymanov, V.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Sala, K.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

Seeds, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Smalbrugge, E.

Smit, M.

E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” Proc. SPIE 6124, 612419 (2006).
[Crossref]

Smit, M. K.

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Steffan, A. G.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Stohr, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Tahvili, M. S.

Tanbun-Ek, T.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Tandoi, G.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

Thompson, M. G.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
[Crossref]

Tourrenc, J. P.

Umbach, A.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

van Dijk, F.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express 16(14), 10675–10683 (2008).
[Crossref] [PubMed]

Vawter, G. A.

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86 GHz,” Appl. Phys. Lett. 63(12), 1598–1600 (1993).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys., A Mater. Sci. Process. 39, 201–217 (1986).

Weiss, M.

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

Wen, Y. J.

H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
[Crossref]

White, I. H.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
[Crossref]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
[Crossref]

Williams, P. J.

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), and 23rd International Conference on Indium Phosphide and Related Materials, (2011), pp. 1–4.

Wu, C.

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

Wu, M. C.

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

Xia, M.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Yvind, K.

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

Zhao, J.

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), and 23rd International Conference on Indium Phosphide and Related Materials, (2011), pp. 1–4.

Appl. Phys. Lett. (2)

Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, “Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers,” Appl. Phys. Lett. 58(12), 1253–1255 (1991).
[Crossref]

J. P. Hohimer and G. A. Vawter, “Passive mode locking of monolithic semiconductor ring lasers at 86 GHz,” Appl. Phys. Lett. 63(12), 1598–1600 (1993).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys., A Mater. Sci. Process. 39, 201–217 (1986).

Electron. Lett. (1)

K. Yvind, D. Larsson, L. J. Christiansen, J. Mørk, J. M. Hvam, and J. Hanberg, “High-performance 10GHz all-active monolithic mode locked semiconductor lasers,” Electron. Lett. 40(12), 735–736 (2004).
[Crossref]

IEEE J. Quantum Electron (1)

S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron 32(7), 1211–1224 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16(9), 990–996 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: Experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

L. Hou, M. Haji, and J. H. Marsh, “Monolithic mode-locked laser with an integrated optical amplifier for low-noise and high-power operation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100808 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (5)

S. Arahira and Y. Ogawa, “480-GHz Subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode,” IEEE Photonics Technol. Lett. 14(4), 537–539 (2002).
[Crossref]

L. Hou, M. Haji, B. Qiu, and A. C. Bryce, “Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator,” IEEE Photonics Technol. Lett. 23(15), 1064–1066 (2011).
[Crossref]

H. Fan, C. Wu, M. El-Aasser, N. K. Dutta, U. Koren, and A. B. Piccirilli, “Colliding pulse mode-locked laser,” IEEE Photonics Technol. Lett. 12(8), 972–973 (2000).
[Crossref]

K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenløwe, J. Mørk, D. Birkedal, J. M. Hvam, and J. Hanberg, “Low-jitter and high-power 40-GHz all-active mode-locked lasers,” IEEE Photonics Technol. Lett. 16(4), 975–977 (2004).
[Crossref]

H. C. Bao, H. F. Liu, and Y. J. Wen, “Amplitude noise of 40-GHz pulses from a subharmonically synchronous mode-locked semiconductor laser,” IEEE Photonics Technol. Lett. 14(4), 540–542 (2002).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. Stohr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. Seeds, A. G. Steffan, A. Umbach, and M. Weiss, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Tech. 58(11), 3071–3082 (2010).

J. Lightwave Technol. (2)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: A new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
[Crossref]

New J. Phys. A (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. A 6, 179 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photonics Res. (1)

C. Gordón, R. Guzmán, X. Leijtens, and G. Carpintero, “On-chip mode-locked laser diode structure using multimode interference reflectors,” Photonics Res. 3(1), 15–18 (2015).
[Crossref]

Proc. SPIE (1)

E. Bente and M. Smit, “Ultrafast InP optical integrated circuits,” Proc. SPIE 6124, 612419 (2006).
[Crossref]

Other (6)

M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “A Generic Foundry Model for InP-based Photonic ICs," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3E.3.

J. Akbar, L. Hou, M. Haji, R. Dylewicz, M. J. Strain, J. H. Marsh, A. C. Bryce, and A. E. Kelly, “High average power (200 mW) 40 GHz mode-locked DBR lasers with integrated tapered optical amplifiers,” in Conference on Lasers and Electro-Optics (CLEO, 2012), CW1N.7.
[Crossref]

H. Cao, H. Deng, H. Ling, C. Liu, V. A. Smagley, R. B. Caldwell, G. A. Smolyakov, A. L. Gray, L. F. Lester, P. G. Eliseev, and M. Osinski, “Unidirectional operation of quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThO2.

S. Joshi, N. Chimot, R. Rosales, S. Barbet, A. Accard, A. Ramdane, and F. Lelarge, “Mode-locked InAs/InP quantum dash based DBR laser monolithically integrated with a semiconductor optical amplifier,” in 25th International Conference on Indium Phosphide and Related Materials (IPRM, 2013), pp 1-2.
[Crossref]

J. Zhao, E. Kleijn, P. J. Williams, M. K. Smit, and X. J. M. Leijtens, “On-chip laser with multimode interference reflectors realized in a generic integration platform,” in Compound Semiconductor Week (CSW/IPRM), and 23rd International Conference on Indium Phosphide and Related Materials, (2011), pp. 1–4.

The pure play InP Photonics foundry, “SMART Photonics”, http://www.smartphotonics.nl/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

On-chip colliding mode locked lasers based on multimode interference reflectors: (a) Schematic of the device structure, and (b) Microscope photograph of different devices, with different cavity lengths, fabricated in the MPW run.

Fig. 2
Fig. 2

Experimental setup. I: Current source, -V: reverse bias voltage, TE cooler: thermoelectric cooler, OI: optical isolator, PM: power meter, EDFA: erbium doped fiber amplifier, PC: polarization controller, AC: autocorrelator, PD: photodiode, MX: mixer, ESA: electrical spectrum analyzer, OSA: optical spectrum analyzer.

Fig. 3
Fig. 3

Optical power versus injection current (P-I curve) for: (a) Dev_A and (b) Dev_B. Identified regions are CW: continuous-wave, ML: mode-locked. Evolution of optical spectrum: (c) Dev_A and (d) Dev_B. Detailed P-I curve around threshold at different SA voltages for: (e) Dev_A and (f) Dev_B.

Fig. 4
Fig. 4

(a) Optical spectrum log scale of the Dev_A. The inset shows the frequency mode spacing of 36.94 GHz, resolution 0.02 nm. (b) Optical spectrum linear scale of the Dev_A. (c) Optical spectrum log scale of the Dev_B. The inset shows the frequency mode spacing of 69.76 GHz, resolution 0.02 nm. (d) Optical spectrum linear scale of the Dev_B.

Fig. 5
Fig. 5

(a) Electrical spectrum of the Dev_A at free running condition, CF = 20 GHz, span = 40 GHz, RBW = 3 MHz, VBW = 3 MHz. (b) Electrical spectra map of the Dev_A at VSA = 0 V. (c) Fundamental frequency linewidth of the Dev_A, CF = 18.473 GHz, span = 500 MHz, RBW = 1MHz, VBW = 1 MHz. (d) Second harmonic frequency linewidth of the Dev_A, CF = 36.946 GHz, span = 90 MHz, RBW = 1MHz, VBW = 1 MHz.

Fig. 6
Fig. 6

Electrical spectrum of the Dev_A at a colliding pulse mode locking regime: (a) full span, (b) Electrical spectrum evolution at VSA = −1.7 V and (c) Colliding beat note linewidth.

Fig. 7
Fig. 7

Electrical spectrum of the Dev_B at a colliding pulse mode locking regime: (a) Span = 500 MHz, (b) Colliding beat note linewidth.

Fig. 8
Fig. 8

Optical pulse characterization: (a) Pulse width and TBP versus gain section current level. (b) Pulse width and TBP versus reverse absorber voltage and (c) Shortest pulse optical line shape.

Fig. 9
Fig. 9

(a) Single side-band phase noise of the Dev_A at the pure colliding pulse mode locking condition. (b) Amplitude noise measured at the pure colliding pulse mode locking condition of the Dev_A.

Tables (2)

Tables Icon

Table 1 Devices fabricated in the SMART Photonics multi-project wafer (MPW) run.

Tables Icon

Table 2 Measurements performed in the devices fabricated in SMART Photonics MPW run.

Metrics