Abstract

Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an ‘optical via’ with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

3D polymer directional coupler for on-board optical interconnects at 1550 nm

Xiao Xu, Lin Ma, and Zuyuan He
Opt. Express 26(13) 16344-16351 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
    [Crossref]
  2. D. A. B. Miller, “Physical reasons for optical interconnection,” J. Optoelectron. 11, 155 (1997).
  3. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref] [PubMed]
  4. U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
    [Crossref]
  5. R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
    [Crossref]
  6. Information on Ormocer Materials, Ormocore and Ormoclad available at: http://microresist.de/sites/default/files/download/OrmoCore_OrmoClad_product_information.pdf
  7. W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
    [Crossref]
  8. F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
    [Crossref]
  9. T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).
  10. J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
    [Crossref]
  11. M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).
  12. J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).
  13. A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).
  14. C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).
  15. J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
    [PubMed]
  16. M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
    [Crossref]
  17. R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
    [Crossref]
  18. M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
    [Crossref]
  19. W. Ni, X. Wu, and J. Wu, “Layer-to-layer optical interconnect coupling by soft-lithographic stamping,” Opt. Express 17(3), 1194–1202 (2009).
    [Crossref] [PubMed]
  20. C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
    [Crossref]
  21. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  22. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photon. Technol. Lett. 26(7), 706–709 (2014).
    [Crossref]
  23. Fimmwave by Photon design [Online]. Available: http://www.photond.com/products/fimmwave.htm .

2015 (3)

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

2014 (3)

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photon. Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

2013 (3)

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

2012 (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2011 (1)

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

2010 (1)

R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
[Crossref]

2009 (2)

2004 (2)

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

2003 (1)

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

1999 (1)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

1998 (1)

M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
[Crossref]

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” J. Optoelectron. 11, 155 (1997).

1992 (1)

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

Akimoto, R.

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photon. Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

Alajoki, T.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

Andre, P. S.

R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
[Crossref]

Bae, B. S.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Blaaderen, A. V.

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Boersma, A.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Bosman, E.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Bräuer, A.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Carlos, L. D.

R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
[Crossref]

Chang, C. C.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Chen, C. T.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Chiu, C. Y.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Corbett, B.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Dangel, R.

Dannberg, P.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Delis, J.

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Duis, J.

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Fang, W.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Feng, J.

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photon. Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

Ferreira, R. A. S.

R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
[Crossref]

Fröhlich, L.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Gale, M. T.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Gimkiewicz, C.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Gu, F.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Hiltunen, J.

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
[PubMed]

Hiltunen, M.

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
[PubMed]

Hofrichter, J.

Horowitz, M.

M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
[Crossref]

Horst, F.

Houbertz, R.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Hsiao, H. L.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Imamura, S.

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

Izawa, T.

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Jubin, D.

Justice, J.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

Karioja, P.

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
[PubMed]

Karpinen, M.

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Karppinen, M.

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Khan, U.

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

Kim, W. S.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

Kim, Y. C.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

Kokkonen, A.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

Korhonen, T.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

La Porta, A.

Lan, H. C.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lappalainen, J.

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
[PubMed]

Lee, H.-J.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lee, J. H.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

Lee, M.-H.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lee, Y. C.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lin, S. S.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Lin, Y. S.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Mahmud-Skender, S.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Masuda, N.

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Meier, N.

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnection,” J. Optoelectron. 11, 155 (1997).

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Myllylä, R.

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

Nakagome, H.

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

Ni, W.

Offrein, B. J.

R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
[Crossref] [PubMed]

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Oh, M.-C.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Ortsiefer, M.

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Popall, M.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Puustinen, J.

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

J. Hiltunen, M. Hiltunen, J. Puustinen, J. Lappalainen, and P. Karioja, “Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer,” Opt. Express 17(25), 22813–22822 (2009).
[PubMed]

Salminen, N.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Shen, P. K.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Shin, S. Y.

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

Sidiropoulos, S.

M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
[Crossref]

Soganci, I. M.

Steenberge, G. V.

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

Streppel, U.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Thiele, H. D.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Tong, L.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Uusitalo, S.

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

Wächter, C.

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

Wang, M.

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

Weiss, J.

Westenhofer, S.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Wiegersma, S.

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

Wu, J.

Wu, M. L.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Wu, X.

Yang, C. K. K.

M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
[Crossref]

Yoshimura, R.

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

Yu, H.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

Zeng, M. Y.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Zhu, T. Z.

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

Zschokke, C.

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

Electron. Lett. (1)

R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, “Coupling ratio control of polymeric waveguide couplers by bending,” Electron. Lett. 28(23), 2135–2136 (1992).
[Crossref]

IEEE Micro (1)

M. Horowitz, C. K. K. Yang, and S. Sidiropoulos, “High-speed electrical signaling: overview and limitations,” IEEE Micro 18(1), 12–24 (1998).
[Crossref]

IEEE Photon. J. (1)

C. T. Chen, P. K. Shen, T. Z. Zhu, C. C. Chang, S. S. Lin, M. Y. Zeng, C. Y. Chiu, H. L. Hsiao, H. C. Lan, Y. C. Lee, Y. S. Lin, and M. L. Wu, “Chip-level 1 × 2 optical interconnects using polymer vertical splitter on silicon substrate,” IEEE Photon. J. 6(2), 7900410 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (6)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photon. Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

W. S. Kim, J. H. Lee, S. Y. Shin, B. S. Bae, and Y. C. Kim, “Fabrication of ridge waveguides by UV embossing and stamping of sol-gel hybrid materials,” IEEE Photon. Technol. Lett. 16(8), 1888–1890 (2004).
[Crossref]

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett. 25(1), 22–24 (2013).
[Crossref]

J. Hiltunen, A. Kokkonen, J. Puustinen, M. Hiltunen, and J. Lappalainen, “UV-imprinted single-mode waveguides with low loss at visible wavelength,” IEEE Photon. Technol. Lett. 25(10), 996–998 (2013).
[Crossref]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photon. Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” J. Optoelectron. 11, 155 (1997).

Microelectron. Eng. (1)

M. Wang, J. Hiltunen, S. Uusitalo, J. Puustinen, J. Lappalainen, P. Karioja, and R. Myllylä, “Fabrication of optical inverted-rib waveguides using UV-imprinting,” Microelectron. Eng. 88(2), 175–178 (2011).
[Crossref]

Opt. Express (3)

Opt. Mater. (2)

U. Streppel, P. Dannberg, C. Wächter, A. Bräuer, L. Fröhlich, R. Houbertz, and M. Popall, “New waferscale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photo-responsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21(1-3), 475–483 (2003).
[Crossref]

R. A. S. Ferreira, P. S. Andre, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. 32(11), 1397–1409 (2010).
[Crossref]

Proc. SPIE (5)

M. Karppinen, N. Salminen, T. Korhonen, T. Alajoki, E. Bosman, G. V. Steenberge, J. Justice, U. Khan, B. Corbett, and A. Boersma, “Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL,” Proc. SPIE 9368, 936817 (2015).

J. Justice, U. Khan, T. Korhonen, A. Boersma, S. Wiegersma, M. Karppinen, and B. Corbett, “Design, fabrication, and characterization of nano-imprinted single-mode waveguide structures for intra-chip optical communications,” Proc. SPIE 9368, 936834 (2015).

A. Boersma, B. J. Offrein, J. Duis, J. Delis, M. Ortsiefer, G. V. Steenberge, M. Karpinen, A. V. Blaaderen, and B. Corbett, “Polymer-based optical interconnects using nanoimprint lithography,” Proc. SPIE 8630, 86300Y (2013).

C. Gimkiewicz, H. D. Thiele, C. Zschokke, S. Mahmud-Skender, S. Westenhofer, and M. T. Gale, “Cost-effective fabrication of waveguides for PLCs by replication in UV-curable sol-gel material,” Proc. SPIE 5451, 465–474 (2004).

T. Korhonen, N. Salminen, A. Kokkonen, N. Masuda, and M. Karppinen, “Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects,” Proc. SPIE 8991, 899103 (2014).

Other (2)

Fimmwave by Photon design [Online]. Available: http://www.photond.com/products/fimmwave.htm .

Information on Ormocer Materials, Ormocore and Ormoclad available at: http://microresist.de/sites/default/files/download/OrmoCore_OrmoClad_product_information.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Diagram showing a schematic combination of in-plane and vertical directional couplers.
Fig. 2
Fig. 2 (a) Step by step fabrication process for multilayer inverted rib waveguides using UV nano-imprinting. (b) Diagrams and Scanning Electron Microscope (SEM) images of inverted rib and rib waveguide processes are shown in the top and bottom part of the image respectively.
Fig. 3
Fig. 3 (a) Comparison of the splitting of light in the ‘coupled’ and ‘through’ ports of polymeric directional couplers with different coupling lengths at 1550 nm. (b) Comparison of the simulated and measured efficiencies of the MMIs of different lengths measured at 1550 nm. (c) Diagrams showing the definition of through and coupled ports and a comparison between the nominal (ideal) and actual fabricated waveguides. The slope of the sidewalls and a residual layer of core material can be seen in the microscope image. A SEM image of a comparable imprinting stamp is shown at the bottom. (d) The measured and simulated modes for MMIs diced at different lengths of the multimode regions.
Fig. 4
Fig. 4 (a) Sketches of Y-splitters designed for 50-50% and 50%, 25%, 12.5%, 6.25% and 6.25% splitting. Microscope images of (b) the fabricated 50-50% Y-splitter, (c) the start of the cascaded Y-splitter and (d) the continuation of the cascaded Y-splitter.
Fig. 5
Fig. 5 Simulations of the maximum efficiency as a function of MMI length for: (a) an increase in the side wall angle, (b) a change in refractive index contrast, (c) a change in residual layer thickness. Simulations of the maximum efficiency as a function of directional coupler length for: (d) wall angle showing that the coupling length increases from 1100 µm to 1800 µm compared to 100 µm change in the optimum for the MMI, (e) a change in refractive index contrast. (f) a change in residual layer thickness.
Fig. 6
Fig. 6 Comparison of the measured modes in a directional coupler at different wavelengths with the simulations confirms that refractive index contrast of the sample is 0.8%. The measured coupling lengths are also in agreement with the simulations.
Fig. 7
Fig. 7 (a) Measured normalized powers from ‘through’ and ‘coupled’ ports of the vertical directional coupler. A crossing at 900 µm was also measured for in-plane directional couplers. (b) Schematic of a vertical coupler with the measured image of the light split laterally and vertically. (c) Microscope images of a multilevel device to show the alignment of the vertically connected waveguides. The top image was taken after imprinting the 2nd level waveguides and before spinning the core material. (d) Schematic of 1x4 2-D port device with camera image of light split into the 4 ports. The interference fringes were measured by defocusing the camera.

Metrics