Abstract

We report on an optical amplifier based on a Nd:YAG channel waveguide, which was fabricated by proton beam writing. Under the pumping of a continuous wave laser, the high-gain optical amplifications at single wavelength of 1064 nm and wavelength band of 1300 nm −1360 nm were obtained. The maximum gain was 24 dB/cm at 1064 nm and 6 dB/cm at 1319 nm, respectively. This work paves a way to apply proton beam written Nd:YAG waveguides as integrated optical amplifiers for the efficient amplification.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier

Yang Tan, Qingfang Luan, Fengqin Liu, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 21(12) 13992-13997 (2013)

Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing

Yicun Yao, Yang Tan, Ningning Dong, Feng Chen, and Andrew A. Bettiol
Opt. Express 18(24) 24516-24521 (2010)

Ion irradiated Er:YAG ceramic cladding waveguide amplifier in C and L bands

Yang Tan, Linan Ma, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Mater. Express 6(3) 711-716 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  2. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [Crossref] [PubMed]
  3. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [Crossref] [PubMed]
  4. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
    [Crossref]
  5. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  6. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
    [Crossref]
  7. M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
    [Crossref]
  8. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
    [Crossref]
  9. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
    [Crossref]
  10. R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18(12), 13212–13219 (2010).
    [Crossref] [PubMed]
  11. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
    [Crossref]
  12. L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, and X. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
    [Crossref] [PubMed]
  13. L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
    [Crossref] [PubMed]
  14. Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
    [Crossref] [PubMed]
  15. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
    [Crossref] [PubMed]
  16. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express 16(16), 12264–12271 (2008).
    [Crossref] [PubMed]
  17. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref] [PubMed]
  18. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
    [Crossref] [PubMed]
  19. Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
    [Crossref]
  20. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
    [Crossref]
  21. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
    [Crossref]
  22. T. Calmano and S. Muller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
  23. T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).
  24. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [Crossref] [PubMed]
  25. A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
    [Crossref] [PubMed]
  26. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
    [Crossref]
  27. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
    [Crossref]

2015 (1)

T. Calmano and S. Muller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

2014 (1)

2013 (4)

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

2012 (2)

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (3)

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, and X. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
[Crossref] [PubMed]

2010 (5)

2008 (2)

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[Crossref]

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express 16(16), 12264–12271 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

2005 (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

2002 (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

Akhmadaliev, S.

Aubry, N.

Balembois, F.

Beecher, S. J.

Benayas, A.

Bettiol, A. A.

Calmano, T.

T. Calmano and S. Muller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Chen, F.

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref] [PubMed]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[Crossref] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[Crossref]

Chen, L.

Chen, P. Y.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dascalu, T.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Délen, X.

Didierjean, J.

Dong, N.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Flores-Romero, E.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

George, M.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

Georges, P.

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Guo, L.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Hebbink, G. A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Hofstraat, J. W.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Hönninger, C.

Hsu, K. Y.

Huang, K. Y.

Huang, S. L.

Huber, G.

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Jaque, D.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35(23), 3898–3900 (2010).
[Crossref] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[Crossref]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jheng, D. Y.

Jipa, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Kar, A. K.

Klink, S. I.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

Kränke, C.

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Lan, R.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Liu, F.

Liu, F.-Q.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Liu, H.

Lu, Q.-M.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Luan, Q.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Márquez, H.

Martial, I.

Mottay, E.

Muller, S.

T. Calmano and S. Muller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

Müller, S.

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Narusawa, T.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Paschke, A.

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Pavel, N.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Polman, A.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[Crossref]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

Psaila, N. D.

Qiu, F.

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Quiring, V.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

Rangel-Rojo, R.

Reinhoudt, D. N.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Rickards, J.

Ricken, R.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

Rodenas, A.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Salamu, G.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Slooff, L. H.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

Sohler, W.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

Sun, S.

Tan, Y.

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
[Crossref]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[Crossref] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[Crossref]

Thomson, R. R.

Trejo-Luna, R.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

van Blaaderen, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

van Veggel, F. C. J. M.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[Crossref]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

Vázquez, G. V.

Voicu, F.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Wang, J.

Wang, Z.

Xu, X.

Yao, Y.

Yeh, P. S.

Yu, H.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Zamfirescu, M.

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Zaouter, Y.

Zhang, C.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

Zhao, Y.

Zhou, S.

Zhuang, S.

Zhuo, W. J.

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Phys. B (2)

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103(4), 837–840 (2011).
[Crossref]

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105(4), 871–875 (2011).
[Crossref]

Appl. Phys. Lett. (2)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(1886), 1886–1888 (1996).
[Crossref]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Muller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).

J. Appl. Phys. (1)

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91(7), 3955–3980 (2002).
[Crossref]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D 43(7), 075105 (2010).
[Crossref]

Laser Photonics Rev. (3)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev. 7(1), 122–131 (2013).
[Crossref]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Laser Phys. Lett. (1)

N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, and T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013).
[Crossref]

Nature (2)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[Crossref] [PubMed]

Opt. Express (7)

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15(14), 8513–8520 (2007).
[Crossref] [PubMed]

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express 16(16), 12264–12271 (2008).
[Crossref] [PubMed]

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18(12), 13212–13219 (2010).
[Crossref] [PubMed]

L. Chen, Z. Wang, H. Liu, S. Zhuang, H. Yu, L. Guo, R. Lan, J. Wang, and X. Xu, “Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(21), 22167–22173 (2010).
[Crossref] [PubMed]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (1)

T. Calmano, A. Paschke, S. Müller, C. Kränke, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” 21(21), 25501–25508 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic plot of the experimental setup for the signal amplification in the focused proton beam writing waveguide.
Fig. 2
Fig. 2 (a) Optical transmission microscope image of the waveguide cross section. The measured intensity distribution of the propagation mode at the wavelength of (b) 810 nm and (c) 1064 nm, respectively.
Fig. 3
Fig. 3 Comparison of the room temperature luminescence emission spectra correlated to Nd3+ ions at 4F3/2 to 4I11/2 (a) and 4F3/2 to 4I13/2 (b) transitions obtained from the channel waveguide (red line) and the bulk (blue line).
Fig. 4
Fig. 4 (a) The pulse train of the input signal at the wavelength of 1064 nm. The pulse train of the output light without (b) and with (c) pumping light.
Fig. 5
Fig. 5 (a) Measured gain (λs = 1064 nm) as a function of the pumping power (λp = 815 nm). (b) The variation of gain along with the wavelength of the pumping light at the pumping power of 100 mW.
Fig. 6
Fig. 6 Measured absorption and gain spectrum in the wavelength range of 1260 nm – 1380 nm (λp = 808 nm).

Metrics