Abstract

Optical plasmonic antennas allow for localizing and enhancing light at the nanoscale. To enhance the application opportunities of optical antennas, their quality factor needs to be substantially improved. Here, we numerically and experimentally demonstrate that the resonance of a dipolar metallic disc antenna can be enhanced by a circular grating that obeys the Bragg condition. The supporting grating effectively collects energy from an extended spatial domain and guides it spectrally-selected into the central antenna, leading to a significantly enhanced field intensity at resonance. Accordingly, the quality factor of the antenna is enhanced by at least five times. The approach can be applied to other plasmonic systems, hence constituting an important ingredient to a future plasmonic tool box.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly resonant and directional optical nanoantennas

Jing Qi, Thomas Kaiser, Ralf Peuker, Thomas Pertsch, Falk Lederer, and Carsten Rockstuhl
J. Opt. Soc. Am. A 31(2) 388-393 (2014)

Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement

Daniel Lin and Jer-Shing Huang
Opt. Express 22(7) 7434-7445 (2014)

Resonant and non-resonant generation and focusing of surface plasmons with circular gratings

Jennifer M. Steele, Zhaowei Liu, Yuan Wang, and Xiang Zhang
Opt. Express 14(12) 5664-5670 (2006)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
    [Crossref]
  3. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [Crossref] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [Crossref] [PubMed]
  5. B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 310–341.
    [Crossref]
  6. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  7. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
    [Crossref]
  8. R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
    [Crossref]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  10. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
    [Crossref]
  11. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
    [Crossref] [PubMed]
  12. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  13. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [Crossref] [PubMed]
  14. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  15. G. Lévêque and O. J. F Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmon,” J. Appl. Phys. 100(12), 124301 (2006).
    [Crossref]
  16. A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
    [Crossref] [PubMed]
  17. C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plas-mons,” Opt. Express 18(8), 8006–8018 (2010).
    [Crossref] [PubMed]
  18. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
    [Crossref] [PubMed]
  19. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
    [Crossref] [PubMed]
  20. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
    [Crossref]
  21. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16(3), 1475–1480 (2008).
    [Crossref] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  23. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bulls eye structures,” Opt. Express 19(11), 10429–10442 (2011).
    [Crossref] [PubMed]
  24. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
    [Crossref] [PubMed]
  25. O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
    [Crossref] [PubMed]
  26. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
    [Crossref] [PubMed]
  27. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
    [Crossref] [PubMed]
  28. J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
    [Crossref]
  29. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
    [Crossref] [PubMed]
  30. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 21–34.
  31. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
    [Crossref]
  32. S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
    [Crossref]
  33. A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
    [Crossref]
  34. J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31(2), 388–393 (2014).
    [Crossref]
  35. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antennas Propag. AP14(3), 302–307 (1966).
  36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]

2014 (1)

2013 (2)

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (2)

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

2011 (10)

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bulls eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

2010 (7)

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plas-mons,” Opt. Express 18(8), 8006–8018 (2010).
[Crossref] [PubMed]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (4)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

2006 (1)

G. Lévêque and O. J. F Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmon,” J. Appl. Phys. 100(12), 124301 (2006).
[Crossref]

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
[Crossref]

1966 (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antennas Propag. AP14(3), 302–307 (1966).

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Ahmed, A.

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Baron, A.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Berini, P.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bharadwaj, P.

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

Bulu, I.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

Cai, L.

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

CarreteroPalacios, S.

Carretero-Palacios, S.

Chen, C.

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Choy, J. T.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

Crozier, K. B.

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Deutsch, B.

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bulls eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref] [PubMed]

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Egorov, O. A.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Filter, R.

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

García de Abajo, F. J.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
[Crossref]

García-Vida, F. J.

Garcia-Vidal, F. J.

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Genet, C.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Gordon, R.

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Hänsel, A.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

Hasan, S. B.

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

Hausmann, B. J. M.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hosseini, A.

Huang, I-C.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

Hugonin, J. P.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Janitz, E.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Kaiser, T.

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Kuttge, M.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
[Crossref]

Lalanne, P.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Lederer, F.

J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31(2), 388–393 (2014).
[Crossref]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lévêque, G.

G. Lévêque and O. J. F Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmon,” J. Appl. Phys. 100(12), 124301 (2006).
[Crossref]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Li, G.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Loncar, M.

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bulls eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref] [PubMed]

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 21–34.

Martin, O. J. F

G. Lévêque and O. J. F Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmon,” J. Appl. Phys. 100(12), 124301 (2006).
[Crossref]

Martin-Moreno, L.

Martín-Moreno, L.

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Massoud, Y.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Nejati, H.

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Pei, Y.

Pertsch, T.

Peuker, R.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Polman, A.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
[Crossref]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
[Crossref]

Qi, J.

J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31(2), 388–393 (2014).
[Crossref]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Rockstuhl, C.

J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and directional optical nanoantennas,” J. Opt. Soc. Am. A 31(2), 388–393 (2014).
[Crossref]

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

Rodier, J-C.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Rodrigo, S. G.

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Rodrigo, Sergio G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rousseau, E.

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

Saleh, B. A.

B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 310–341.
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Teich, M. C.

B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 310–341.
[Crossref]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
[Crossref]

Vogelgesang, R.

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

Wang, D.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

Xiao, F.

Xu, A.

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, T.

Yee, K. S.

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antennas Propag. AP14(3), 302–307 (1966).

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, and M. Lončar, “Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings,” Appl. Phys. Lett. 103(16), 161101 (2013).
[Crossref]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antennas Propag. AP14(3), 302–307 (1966).

J. Appl. Phys. (1)

G. Lévêque and O. J. F Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmon,” J. Appl. Phys. 100(12), 124301 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (10)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Baron, E. Devaux, J-C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact Antenna for Efficient and Unidirectional Launching and Decoupling of Surface Plasmons,” Nano Lett. 11(10), 4207–4212 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plamonic Lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall Mode Volume Plasmonic Nanodisk Resonators,” Nano Lett. 10(5), 1537–1541 (2011).
[Crossref]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref] [PubMed]

Nature Photon. (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Nature Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[Crossref]

Opt. Express (7)

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[Crossref] [PubMed]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16(3), 1475–1480 (2008).
[Crossref] [PubMed]

C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plas-mons,” Opt. Express 18(8), 8006–8018 (2010).
[Crossref] [PubMed]

G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18(10), 10487–10499 (2010).
[Crossref] [PubMed]

O. Mahboub, S. CarreteroPalacios, C. Genet, F. J. García-Vida, S. G. Rodrigo, L. Martín-Moreno, and T. W. Ebbesen, “Optimization of bulls eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[Crossref] [PubMed]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bulls eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. Hänsel, O. A. Egorov, S. B. Hasan, C. Rockstuhl, and F. Lederer, “Optical bistability in a doubly resonant χ(2)-nonlinear plasmonic nanocavity,” Phys. Rev. A 85(5), 053843 (2012).
[Crossref]

Phys. Rev. B (3)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556 (1991).
[Crossref]

S. B. Hasan, R. Filter, A. Ahmed, R. Vogelgesang, R. Gordon, C. Rockstuhl, and F. Lederer, “Relating localized nanoparticle resonances to an associated antenna problem,” Phys. Rev. B 84(19), 195405 (2011).
[Crossref]

R. Filter, J. Qi, C. Rockstuhl, and F. Lederer, “Circular optical nanoantennas: an analytical theory,” Phys. Rev. B 85(12), 125429 (2012).
[Crossref]

Phys. Rev. Lett. (1)

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming Light from a Subwavelength Aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically Controlled Nonlinear Generation of Light with Plasmonics,” Science 333, 1720–1723 (2011).
[Crossref] [PubMed]

Other (2)

B. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 310–341.
[Crossref]

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 21–34.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of a disc resonator with a ring grating in a homogenous dielectric environment. The geometrical parameters are defined in the figure. Quantities are given in the text.

Fig. 2
Fig. 2

(a) Maximum intensity of the normal electric field component | E y max | 2 recorded 20 nm above the surface of the central nanodisc when the periodicity of the surrounded ring gratings varies. The blue curve is obtained by illuminating the structure with a plane wave at the resonance frequency of the bare disc (315 THz). The optimal grating period (indicated by the blue dashed line) approximately equals the SPP wavelength. The red curve is obtained with an off-resonance illumination frequency of 300 THz. (b) Spectral characteristics of the nanodisc endowed with circular gratings of different periodicity (dashed lines) and without grating (black solid curve). The spectrum with optimized grating period (670 nm) is plotted by the red dashed line.

Fig. 3
Fig. 3

(a) Spectral characteristics of the nanodisc antenna endowed with circular gratings of different ring numbers. The insets display the amplitude of the normal electric field component above the nanodisc with five optimized rings (upper) and without rings (lower). Both are resonant fields recorded at the resonance frequency of 315 THz. The insets share the same color scale. (b) Spectral characteristics of the nanoantenna endowed with a periodic ring grating (periodicity 670 nm and five periods are considered, red dash-dot line), five rings whose radial distances are fitted to the roots of Bessel function (green dashed line), and five aperiodic optimized rings (blue solid line). All the evaluated structures are embedded in the symmetric dielectric environment. Black dashed line depicts the dispersive characteristic of the bare nanodisc for comparison.

Fig. 4
Fig. 4

(a) Spectral characteristics of a disc resonator endowed with five optimized rings in an asymmetric dielectric environment. The optimized grating parameters are obtained by taking the maximum field intensity of the normal electric field component | E y max | 2 20 nm above the metal-air interface of the central nanodisc (red solid curve) as the optimization criterion. The black curve corresponds to the spectral characteristic of an isolated disc resonator in the asymmetric dielectric environment. For the sake of completeness, the maximum field intensities 20 nm below the metal-glass interface are also presented (green solid curve). Blue dashed curve depicts the same quantity as the red solid curve but with additional metal film around the entire ring disc structure. This is consistent with the actual experimental configuration. (b) and (c) Normal electric field amplitude |Ey|20 nm above the metal-air interface and below the metal-glass interface at the resonance peak of 375 THz. (d) and (e) Normal electric field amplitude |Ey| 20 nm above the metal-air interface and below the metal-glass interface at the resonance peak of 288 THz. (f) Same field quantity as (b) but with closed metal film around the entire ring disc structure. Only the central fields covering the disc and the first ring are shown in (b)–(f) such that the field profiles are readable. The disc and the outer edge of the first ring are marked in each figure by green dashed line. Color scales for all the figures are the same.

Fig. 5
Fig. 5

(a) Sketch of the nanodisc endowed with a circular grating in an asymmetric dielectric environment in the experiment. (b) SEM image of the fabricated sample. (c) and (d) SNOM measurements of the near field distribution in a bare and a circular grating endowed nanodisc. (e) and (f) Simulated near fields in a bare and circular grating endowed nanodisc.

Metrics