Abstract

Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-accuracy and wide dynamic range frequency-based dispersion spectroscopy in an optical cavity

Agata Cygan, Piotr Wcisło, Szymon Wójtewicz, Grzegorz Kowzan, Mikołaj Zaborowski, Dominik Charczun, Katarzyna Bielska, Ryszard S. Trawiński, Roman Ciuryło, Piotr Masłowski, and Daniel Lisak
Opt. Express 27(15) 21810-21821 (2019)

Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb

Alexandra C. Johansson, Lucile Rutkowski, Anna Filipsson, Thomas Hausmaninger, Gang Zhao, Ove Axner, and Aleksandra Foltynowicz
Opt. Express 26(16) 20633-20648 (2018)

Cavity mode-width spectroscopy with widely tunable ultra narrow laser

Agata Cygan, Daniel Lisak, Piotr Morzyński, Marcin Bober, Michał Zawada, Eugeniusz Pazderski, and Roman Ciuryło
Opt. Express 21(24) 29744-29754 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
    [Crossref]
  2. E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
    [Crossref]
  3. C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
    [Crossref]
  4. R. Monastersky, “Global carbon dioxide levels near worrisome milestone,” Nature 497, 13–14 (2013).
    [Crossref] [PubMed]
  5. L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
    [Crossref]
  6. W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
    [Crossref]
  7. K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys. 74, 1055–1060 (2006).
    [Crossref]
  8. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
    [Crossref]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  10. D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).
  11. A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21, 29744–29754 (2013).
    [Crossref]
  12. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
    [Crossref]
  13. D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
    [Crossref]
  14. W. R. Bennett, “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580–593 (1962).
    [Crossref]
  15. R. A. McFarlane, “Frequency pushing and frequency pulling in a He-Ne gas optical maser,” Phys. Rev. Lett. 135, A543–A550 (1964).
  16. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
    [Crossref]
  17. G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [Crossref]
  18. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [Crossref]
  19. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [Crossref]
  20. S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
    [Crossref]
  21. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam2008).
  22. Ch. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the milihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
    [Crossref]
  23. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
    [Crossref]
  24. A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).
  25. J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
    [Crossref]
  26. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape,” J. Opt. Soc. Am. B 29, 2980–2989 (2012).
    [Crossref]
  27. J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
    [Crossref]
  28. K. K. Lehmann, “Dispersion and Cavity Ring Down spectroscopy,” in Cavity-Ringdown Spectroscopy-An Ultratrace-Absorption Measurement Technique (ACS Books, 1999), pp. 106–124.
    [Crossref]
  29. R. Ciuryło, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029 (1998).
    [Crossref]
  30. K.-E. Peiponen and J. J. Saarinen, “Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).
    [Crossref]
  31. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
    [Crossref]
  32. J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
    [Crossref]
  33. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
    [Crossref]
  34. B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
    [Crossref] [PubMed]
  35. S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
    [Crossref]
  36. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
    [Crossref]
  37. A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
    [Crossref] [PubMed]
  38. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection ad in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy - theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
    [Crossref]
  39. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [Crossref]
  40. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
    [Crossref]
  41. J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
    [Crossref]
  42. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadenig on spectral lines,” Phys. Rev. 122, 1218 (1961).
    [Crossref]
  43. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
    [Crossref]
  44. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
    [Crossref]
  45. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
    [Crossref] [PubMed]
  46. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
    [Crossref]
  47. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref] [PubMed]
  48. D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
    [Crossref]
  49. T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
    [Crossref]
  50. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
    [Crossref]
  51. A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
    [Crossref]
  52. M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13, 882–888 (2005).
    [Crossref] [PubMed]

2014 (5)

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

2013 (7)

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21, 29744–29754 (2013).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

R. Monastersky, “Global carbon dioxide levels near worrisome milestone,” Nature 497, 13–14 (2013).
[Crossref] [PubMed]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

2012 (5)

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape,” J. Opt. Soc. Am. B 29, 2980–2989 (2012).
[Crossref]

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
[Crossref]

2011 (3)

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection ad in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy - theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011).
[Crossref]

2009 (2)

K.-E. Peiponen and J. J. Saarinen, “Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

2007 (2)

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

2006 (2)

K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys. 74, 1055–1060 (2006).
[Crossref]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

2005 (3)

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13, 882–888 (2005).
[Crossref] [PubMed]

2004 (2)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

2000 (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

1998 (3)

R. Ciuryło, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029 (1998).
[Crossref]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[Crossref]

S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
[Crossref]

1997 (2)

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

1994 (1)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

1992 (1)

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[Crossref]

1988 (1)

1985 (1)

1983 (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

1980 (1)

1964 (1)

R. A. McFarlane, “Frequency pushing and frequency pulling in a He-Ne gas optical maser,” Phys. Rev. Lett. 135, A543–A550 (1964).

1962 (1)

W. R. Bennett, “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580–593 (1962).
[Crossref]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadenig on spectral lines,” Phys. Rev. 122, 1218 (1961).
[Crossref]

Abe, H.

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

Atherton, B.

S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
[Crossref]

Axner, O

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
[Crossref]

Axner, O.

Bennett, W. R.

W. R. Bennett, “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580–593 (1962).
[Crossref]

Bielska, K.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

Bjork, B. J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[Crossref]

Blanquet, G.

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

Bober, M.

Bouanich, J.-P.

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

Boulet, C.

J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam2008).

Brown, L. R.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Buning, R.

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

Byer, R. L.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[Crossref]

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Casa, G.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Castrillo, A.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Chenevier, M.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

Chris Benner, D.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Ciurylo, R.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21, 29744–29754 (2013).
[Crossref]

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

R. Ciuryło, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029 (1998).
[Crossref]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

Cygan, A.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21, 29744–29754 (2013).
[Crossref]

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Day, T.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[Crossref]

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

De Vizia, M. D.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Devi, V. Malathy

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
[Crossref]

Diels, J. C.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

Diels, J.-C.

S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
[Crossref]

Domyslawska, J.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

Douglass, K. O.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ehlers, P.

Eikema, K. S. E.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

Fasci, E.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Fleisher, A.

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

Fleisher, A. J.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadenig on spectral lines,” Phys. Rev. 122, 1218 (1961).
[Crossref]

Galzerano, G.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Gianfrani, L.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Gross, B.

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Gustafson, E. K.

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[Crossref]

Ch. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the milihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
[Crossref]

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Hartmann, J.-M.

J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam2008).

Hils, D.

Hodges, J. T.

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huber, A.

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Ido, T.

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

Jones, R. J.

Kassi, S.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

Koelemeij, J. C. J.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

Komasa, J.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Lalezari, R.

Lance, B.

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

Laporta, P.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Layer, H. P.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Lehmann, K. K.

K. K. Lehmann, “Dispersion and Cavity Ring Down spectroscopy,” in Cavity-Ringdown Spectroscopy-An Ultratrace-Absorption Measurement Technique (ACS Books, 1999), pp. 106–124.
[Crossref]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Libbrecht, K. G.

K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys. 74, 1055–1060 (2006).
[Crossref]

Libbrecht, M. W.

K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys. 74, 1055–1060 (2006).
[Crossref]

Lisak, D.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

A. Cygan, D. Lisak, P. Morzyński, M. Bober, M. Zawada, E. Pazderski, and R. Ciuryło, “Cavity mode-width spectroscopy with widely tunable ultra narrow laser,” Opt. Express 21, 29744–29754 (2013).
[Crossref]

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Long, D. A.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

Ma, L.-S.

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Maslowski, P.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

Maxwell, S. E.

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

McFarlane, R. A.

R. A. McFarlane, “Frequency pushing and frequency pulling in a He-Ne gas optical maser,” Phys. Rev. Lett. 135, A543–A550 (1964).

Merlone, A.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Miller, C. E.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Miller, W. M.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Moll, K. D.

Monastersky, R.

R. Monastersky, “Global carbon dioxide levels near worrisome milestone,” Nature 497, 13–14 (2013).
[Crossref] [PubMed]

Moretti, L.

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

Morville, J.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

Morzynski, P.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Myneni, K.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Odutola, J. A.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

Ohtsu, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Ozimek, F.

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

Pachucki, K.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

Pazderski, E.

Peiponen, K.-E.

K.-E. Peiponen and J. J. Saarinen, “Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).
[Crossref]

Piwinski, M.

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

Plusquellic, D. F.

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref] [PubMed]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

Prevedelli, M.

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

Reichert, J.

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Reinhold, E.

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Robert, D.

J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam2008).

Romanini, D.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

Russell, J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

Saarinen, J. J.

K.-E. Peiponen and J. J. Saarinen, “Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).
[Crossref]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

Salomon, Ch.

Salumbides, E. J.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

Scace, G. E.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

Shelkovnikov, A. S.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Silander, I.

Smith, D. D.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

St, P.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

Stec, K.

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

Thorpe, M. J.

Toth, R. A.

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Trawinski, R. S.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Truong, G.-W.

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

Ubachs, W.

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

van Zee, R. D.

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

Walrad, J.

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

Wang, J. Y.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wcislo, P.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

Weitz, M.

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

Westberg, J.

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
[Crossref]

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012).
[Crossref]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

Wójtewicz, S.

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

Wong, N. C.

Ye, J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

M. J. Thorpe, R. J. Jones, K. D. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13, 882–888 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[Crossref]

Zawada, M.

Acta Phys. Pol. A (1)

D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A 121, 614–621 (2012).

Am. J. Phys. (1)

K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys. 74, 1055–1060 (2006).
[Crossref]

Appl. Phys. B (6)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12 cm−1Hz−1/2 with a tunable diode laser,” Appl. Phys. B 114, 489–495 (2014).
[Crossref]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005).
[Crossref]

D. A. Long, A. J. Fleisher, S. Wójtewicz, and J. T. Hodges, “Quantum-noise-limited cavity ring-down spectroscopy,” Appl. Phys. B 115, 149–153 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

C. R. Phys. (1)

C. E. Miller, L. R. Brown, R. A. Toth, D. Chris Benner, and V. Malathy Devi, “Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment,” C. R. Phys. 6, 876–887 (2005).
[Crossref]

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43, 1039–1040 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. QE-17, 2225–2227 (1981).
[Crossref]

T. Day, E. K. Gustafson, and R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[Crossref]

J. Mol. Spectrosc. (2)

B. Lance, G. Blanquet, J. Walrad, and J.-P. Bouanich, “On the speed-dependent hard collision lineshape models: Application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997).
[Crossref] [PubMed]

W. Ubachs, R. Buning, K. S. E. Eikema, and E. Reinhold, “On a possible variation of the proton-to-electron mass ratio: H2 spectra in the line of sight of high-redshift quasars and in the laboratory,” J. Mol. Spectrosc. 241, 155–179 (2007).
[Crossref]

J. Opt. Soc. Am. B (6)

J. Phys.: Conf. Ser. (1)

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Alternative approaches to cavity enhanced absorption spectroscopy,” J. Phys.: Conf. Ser. 548, 012024 (2014).

J. Quant. Spectrosc. Radiat. Transfer (2)

S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transfer 130, 191–200 (2013).
[Crossref]

J. Y. Wang, P. Ehlers, I. Silander, J. Westberg, and O Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
[Crossref]

Meas. Sci. Technol. (1)

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Active control of the Pound-Drever-Hall error signal offset in high-repetition-rate cavity ring-down spectroscopy,” Meas. Sci. Technol. 22, 115303 (2011).
[Crossref]

Nat. Photon. (2)

G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photon. 7, 532–534 (2013).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6, 687–692 (2012).
[Crossref]

Nature (1)

R. Monastersky, “Global carbon dioxide levels near worrisome milestone,” Nature 497, 13–14 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–377 (1994).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (2)

W. R. Bennett, “Hole burning effects in a He-Ne optical maser,” Phys. Rev. 126, 580–593 (1962).
[Crossref]

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadenig on spectral lines,” Phys. Rev. 122, 1218 (1961).
[Crossref]

Phys. Rev. A (4)

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersion medium,” Phys. Rev. A 80, 011809 (2009).
[Crossref]

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012).
[Crossref]

R. Ciuryło, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029 (1998).
[Crossref]

S. A. Diddams, J.-C. Diels, and B. Atherton, “Differential intracavity phase spectroscopy and its application to a three-level system in samarium,” Phys. Rev. A 58, 2252 (1998).
[Crossref]

Phys. Rev. D (1)

E. J. Salumbides, J. C. J. Koelemeij, J. Komasa, K. Pachucki, K. S. E. Eikema, and W. Ubachs, “Bounds on fifth forces from precision measurements of molecules,” Phys. Rev. D 87, 112008 (2013).
[Crossref]

Phys. Rev. Lett. (6)

T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch, “Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain,” Phys. Rev. Lett. 79, 2646 (1997).
[Crossref]

L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G. Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, “Determination of the Boltzmann constant by means of precision measurements of H218O line shapes at 1.39 um,” Phys. Rev. Lett. 111, 060803 (2013).
[Crossref]

R. A. McFarlane, “Frequency pushing and frequency pulling in a He-Ne gas optical maser,” Phys. Rev. Lett. 135, A543–A550 (1964).

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 22, 5102 (2000).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St, and J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000).
[Crossref] [PubMed]

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004).
[Crossref]

Rep. Prog. Phys. (1)

K.-E. Peiponen and J. J. Saarinen, “Generalized Kramers-Kronig relations in nonlinear optical- and THz-spectroscopy,” Rep. Prog. Phys. 72, 056401 (2009).
[Crossref]

Rev. Mod. Phys. (1)

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

Rev. Sci. Instrum. (2)

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[Crossref]

A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[Crossref] [PubMed]

Other (3)

J. T. Hodges, D. A. Long, A. Fleisher, K. Bielska, and S. Wójtewicz, “Mode-resolved absorption and dispersion measurements in high-finesse cavities,” in Imaging and Applied Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper LW3D.3.
[Crossref]

J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam2008).

K. K. Lehmann, “Dispersion and Cavity Ring Down spectroscopy,” in Cavity-Ringdown Spectroscopy-An Ultratrace-Absorption Measurement Technique (ACS Books, 1999), pp. 106–124.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The comb of cavity modes in the presence and absence of intracavity medium. The spectral broadening and frequency pushing of cavity modes caused by absorption and dispersion phenomena is illustrated. These two effects are measured by the CMWS and 1D-CMDS techniques, respectively.
Fig. 2
Fig. 2 One-dimensional CMDS. (a) The combs of cavity modes in the vicinity (dots) and absence (sticks) of the intracavity medium form one-dimensional dispersion spectra solely in the frequency domain. In the absorption case clear frequency-pushing of the cavity modes caused by dispersion is shown. (b) The original 1D-CMDS spectrum transformed to a two-dimensional spectrum based on the frequency differences Δν between the dispersion-perturbed (dots in panel a) and unperturbed (sticks in panel a) cavity modes of the same order. (c) The original 1D-CMDS spectrum transformed to a differential two-dimensional spectrum based on the frequency intervals ΔνD calculated in terms of the centers of the (N + k)-th and the N-th dispersion-perturbed cavity modes and given by Eq. (4). In these simulations, k = 1 and the FSR of the empty cavity was νFSR = 0.1 GHz. For clarity, the dispersive shift of the cavity modes Δν was scaled by a factor of 5 × 104.
Fig. 3
Fig. 3 Scheme of the experiment. Laser light with initial frequency νL is split into probing (p-polarized) and locking (s-polarized) beams. A tight lock of the laser frequency to a cavity mode is realized by the Pound-Drever-Hall technique with the laser light phase modulated at RF frequency Ω by an electrooptic modulator (EOM). A half-wave plate (λ/2) and a Faraday rotator (FR) are used to redirect the interfering light from the cavity to a detector Det1 to produce an error signal for the locking servo. The frequency shifter (FS) is an acousto-optic modulator which detunes the probe beam frequency by δ from the locking frequency νL to enable scanning across the cavity mode. The transmitted probe beam intensity is measured by detector Det2, and the locking beam is blocked by the polarizer (Pol). The cavity length is actively stabilized to the reference laser (not shown in the scheme) by a method described in Ref. [32]. Three alternative techniques, CRDS, CMWS and 1D-CMDS can be realized with this setup.
Fig. 4
Fig. 4 Principle of the 1D-CMDS method. (a) The δ-detuned part of the beam of the laser locked to the N-th cavity mode is scanned across the (N + 1)-th mode to record its shape. The information about the intracavity differential dispersion between the (N + 1)-th and N-th cavity modes is retrieved from the frequency interval ΔνD between peak of the (N + 1)-th mode and the locking point frequency νL at the N-th mode. Absorption information is obtained from the width δνm of the (N + 1)-th cavity mode profile. (b) The density of spectral points can be increased by measuring the differential dispersion between cavity modes shifted by Δνc as a result of controlled changes in the cavity length. (c) After successful measurement of the differential dispersion between the N-th and (N + 1)-th modes, the laser is relocked to the next (N + 1)-th mode and another frequency interval between the (N + 2)-th and (N + 1)-th modes is measured.
Fig. 5
Fig. 5 Precision of the cavity mode width and position measurement. Shape of a single cavity mode recorded at non-absorption conditions and residuals from a Lorentzian profile fit. The statistical standard uncertainties of the cavity mode width and position determined from fitting the spectra are u(δνm) = 330 mHz and uνD) = 97 mHz, respectively.
Fig. 6
Fig. 6 Allan variance plot of frequency intervals ΔνD. The minimum corresponds to the 1.4 Hz-frequency noise limit in cavity mode position measurements.
Fig. 7
Fig. 7 Alternative approaches to cavity-enhanced spectroscopy. Experimental (dots) and fitted (line) spectrum of the 13C16O P3 transition from the (3←0) band recorded at a pressure of 2.9 kPa by three independent techniques: CRDS, CMWS and 1D-CMDS. Below are residuals from fits with the Voigt profile (VP) - open circles and the more general speed-dependent Nelkin-Ghatak profile (SDNGP) - dots. Each of the presented spectra is a result of 65 scans averaging. The CRDS and CMWS methods provide the absorption spectrum, whereas the 1D-CMDS spectrum is dispersive and differential because it measures frequency intervals between cavity modes. In all cases, the SDNGP properly matches the experimental data. Note that the y-axis label Δν Dcorr is defined below in the Section labeled “Methods”.
Fig. 8
Fig. 8 Treatment of the 1D-CMDS spectrum. The experimental spectrum (see upper graph and left axis) obtained by 1D-CMDS has a background level that depends on the cavity length. Especially, when the cavity length is tuned during acquisition process, characteristic oscillations appear on the recorded profile. They correspond to slightly different values of the cavity FSR marked by different colors. To focus only on the dispersive character of the spectrum, the background is subtracted from the experimental data (see lower graph and right axis) according to Eq. (6) with k = 1. This form of the 1D-CMDS spectrum is a subject for further analysis.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( ν ) = T 2 e α ( ν ) ( 1 R e α ( ν ) ) 2 + 4 R e α ( ν ) sin 2 [ π ν / ξ ( ν ) ] ,
n ( ν ) = c N S Im [ ( ν ν 0 ) ] 2 k 0 ,
κ ( ν ) = c N S Re [ ( ν ν 0 ) ] 2 k 0 .
Δ ν D ( k ) = ( N + k ) ξ ( ν L + Δ ν D ( k ) ) N ξ ( ν L ) ,
ξ ( ν ) = ν FSR 1 c N S Im [ ( ν ν 0 ) ] / ( 2 n k 0 ) .
Δ ν Dcorr ( k ) = Δ ν D ( k ) k Δ ν C N k ν FSR .

Metrics