Abstract

A detailed theoretical study of composite plasmonic waveguide structures is reported. Expressions for modal expansion coefficients, optical transmittance and surface intensity are presented and used to describe the behavior of dielectric channel waveguides containing a short gold-coated section. The superstrate refractive index is shown to control modal beating and modal attenuation in the gold-coated region leading to distinctive features in the surface intensity and device transmittance. The model presented allows detailed prediction of device performance, enabling improved design of highly sensitive miniature devices for evanescent refractometry and vibrational spectroscopy, and can be extended to the design and optimization of composite waveguides structures with nano-patterned overlayers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-range surface plasmon polaritons

Pierre Berini
Adv. Opt. Photon. 1(3) 484-588 (2009)

Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths

S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot
Opt. Express 21(19) 22269-22284 (2013)

Extremely short-length surface plasmon resonance devices

Maxim L. Nesterov, Alexandre V. Kats, and Sergei K. Turitsyn
Opt. Express 16(25) 20227-20240 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. B 64(3), 274–279 (1974).
    [Crossref]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
    [Crossref]
  3. M. N. Zervas and I. P. Giles, “Performance of surface-plasma-wave fiber-optic polarizers,” Opt. Lett. 9(15), 513–515 (1990).
    [Crossref]
  4. H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.
  5. F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.
  6. S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
    [Crossref]
  7. R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
    [Crossref]
  8. O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
    [Crossref] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  10. J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
    [Crossref]
  11. R. Levy and S. Ruschin, “SPR waveguide sensor based on transition of modes at abrupt discontinuity,” Sensor. Actuat. B-Chem. 124(2), 459–465 (2007).
    [Crossref]
  12. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
    [Crossref]
  13. J. Shibayama, “Numerical analysis of waveguide-based surface plasmon resonance sensors with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
    [Crossref]
  14. J. Shibayama, “Three-Dimensional numerical investigation of an improved surface plasmon resonance waveguide sensor,” IEEE Photon. Technol. Lett. 22(9), 643–645 (2010).
    [Crossref]
  15. J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
    [Crossref]
  16. R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
    [Crossref] [PubMed]
  17. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  18. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [Crossref]
  19. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
    [Crossref]
  20. A. Otto, “Excitation by light of ω+ and ω− surface plasma waves in thin metal layers,” Z. Phys. 219(4), 227–233 (1969).
    [Crossref]
  21. A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
    [Crossref]
  22. R. Wan, F. Liu, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(141104), 1–3 (2009).
    [Crossref]
  23. F. Liu, R. Wan, Y. Huang, and J. Peng, “Refractive index dependence of the coupling characteristics between long-range surface-plasmon-polariton and dielectric waveguide modes,” Opt. Lett. 34(17), 2697–2699 (2009).
    [Crossref] [PubMed]
  24. R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
    [Crossref] [PubMed]
  25. M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photon. Technol. Lett. 2(4), 253–256 (1990).
    [Crossref]
  26. M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-chromium films,” IEEE Photon. Technol. Lett. 2(8), 597–599 (1990).
    [Crossref]
  27. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 48(26), 1927–1930 (1981).
    [Crossref]
  28. M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991).
    [Crossref] [PubMed]
  29. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12(5), 367–369 (1987).
    [Crossref] [PubMed]
  30. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
    [Crossref]
  31. S. J. Al-Bader, “Optical transmission on metallic wires - fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
    [Crossref]
  32. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
    [Crossref]
  33. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005).
    [Crossref] [PubMed]

2014 (2)

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

2010 (2)

J. Shibayama, “Three-Dimensional numerical investigation of an improved surface plasmon resonance waveguide sensor,” IEEE Photon. Technol. Lett. 22(9), 643–645 (2010).
[Crossref]

R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
[Crossref] [PubMed]

2009 (3)

R. Wan, F. Liu, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(141104), 1–3 (2009).
[Crossref]

F. Liu, R. Wan, Y. Huang, and J. Peng, “Refractive index dependence of the coupling characteristics between long-range surface-plasmon-polariton and dielectric waveguide modes,” Opt. Lett. 34(17), 2697–2699 (2009).
[Crossref] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

2008 (2)

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

2007 (3)

J. Shibayama, “Numerical analysis of waveguide-based surface plasmon resonance sensors with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

R. Levy and S. Ruschin, “SPR waveguide sensor based on transition of modes at abrupt discontinuity,” Sensor. Actuat. B-Chem. 124(2), 459–465 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
[Crossref]

2005 (3)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
[Crossref]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005).
[Crossref] [PubMed]

2004 (2)

S. J. Al-Bader, “Optical transmission on metallic wires - fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

1999 (2)

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

1997 (1)

J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
[Crossref]

1991 (1)

1990 (3)

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photon. Technol. Lett. 2(4), 253–256 (1990).
[Crossref]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-chromium films,” IEEE Photon. Technol. Lett. 2(8), 597–599 (1990).
[Crossref]

M. N. Zervas and I. P. Giles, “Performance of surface-plasma-wave fiber-optic polarizers,” Opt. Lett. 9(15), 513–515 (1990).
[Crossref]

1987 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 48(26), 1927–1930 (1981).
[Crossref]

1977 (1)

A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

1974 (1)

J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. B 64(3), 274–279 (1974).
[Crossref]

1969 (1)

A. Otto, “Excitation by light of ω+ and ω− surface plasma waves in thin metal layers,” Z. Phys. 219(4), 227–233 (1969).
[Crossref]

Abuknesha, R. A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Al-Bader, S. J.

S. J. Al-Bader, “Optical transmission on metallic wires - fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

Baets, R.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Beltman, J. M. M.

H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Brecht, A.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
[Crossref]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005).
[Crossref] [PubMed]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Burns, W. K.

A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

Chandran, A.

Charlton, M. D. B.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Chen, R. Q.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Ctyroký, J.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
[Crossref]

Demirci, U.

O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Dereux, A.

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

Dhakal, A.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

Gauglitz, G.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Giles, I. P.

Girard, C.

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
[Crossref]

Harris, R. D.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

Hoekstra, H. J. W. M.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

Homola, J.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
[Crossref]

Huang, Y.

Inci, F.

O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Kalsi, S.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Kats, A. V.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
[Crossref]

Kou, F. Y.

Kreuwel, H. J. M.

H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
[Crossref]

Lambeck, P. V.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.

Le Thomas, N.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Levy, R.

R. Levy and S. Ruschin, “SPR waveguide sensor based on transition of modes at abrupt discontinuity,” Sensor. Actuat. B-Chem. 124(2), 459–465 (2007).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
[Crossref]

Liu, F.

Luff, B. J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Lyndin, N. M.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

Milton, A. F.

A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

Mitchell, G. L.

J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. B 64(3), 274–279 (1974).
[Crossref]

Musa, S.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

Nesterov, M. L.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
[Crossref]

Oo, S.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Otto, A.

A. Otto, “Excitation by light of ω+ and ω− surface plasma waves in thin metal layers,” Z. Phys. 219(4), 227–233 (1969).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Pearce, S. J.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Peng, J.

R. Wan, F. Liu, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(141104), 1–3 (2009).
[Crossref]

F. Liu, R. Wan, Y. Huang, and J. Peng, “Refractive index dependence of the coupling characteristics between long-range surface-plasmon-polariton and dielectric waveguide modes,” Opt. Lett. 34(17), 2697–2699 (2009).
[Crossref] [PubMed]

Peyskens, F.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Piehler, J.

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Polky, J. N.

J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. B 64(3), 274–279 (1974).
[Crossref]

Pollard, M. E.

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

Popma, Th. J. A.

H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.

Quidant, R.

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ruschin, S.

R. Levy and S. Ruschin, “SPR waveguide sensor based on transition of modes at abrupt discontinuity,” Sensor. Actuat. B-Chem. 124(2), 459–465 (2007).
[Crossref]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 48(26), 1927–1930 (1981).
[Crossref]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
[Crossref]

Shibayama, J.

J. Shibayama, “Three-Dimensional numerical investigation of an improved surface plasmon resonance waveguide sensor,” IEEE Photon. Technol. Lett. 22(9), 643–645 (2010).
[Crossref]

J. Shibayama, “Numerical analysis of waveguide-based surface plasmon resonance sensors with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

Skalsky, M.

J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Subramanian, A. Z.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

Tamir, T.

F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12(5), 367–369 (1987).
[Crossref] [PubMed]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

Tokel, O.

O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Turitsyn, S. K.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
[Crossref]

Usievich, B.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

Wan, R.

Webber, J. C.

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

Wilkinson, J. S.

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Zervas, M. N.

M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991).
[Crossref] [PubMed]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photon. Technol. Lett. 2(4), 253–256 (1990).
[Crossref]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-chromium films,” IEEE Photon. Technol. Lett. 2(8), 597–599 (1990).
[Crossref]

M. N. Zervas and I. P. Giles, “Performance of surface-plasma-wave fiber-optic polarizers,” Opt. Lett. 9(15), 513–515 (1990).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
[Crossref]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. Lett. (1)

R. Wan, F. Liu, Y. Huang, and J. Peng, “Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode,” Appl. Phys. Lett. 94(141104), 1–3 (2009).
[Crossref]

Biosens. Bioelectron. (1)

R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelectron. 14(4), 377–386 (1999).
[Crossref] [PubMed]

Chem. Rev. (1)

O. Tokel, F. Inci, and U. Demirci, “Advances in plasmonic technologies for point of care applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

A. F. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

S. J. Al-Bader, “Optical transmission on metallic wires - fundamental modes,” IEEE J. Quantum Electron. 40(3), 325–329 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Shibayama, “Three-Dimensional numerical investigation of an improved surface plasmon resonance waveguide sensor,” IEEE Photon. Technol. Lett. 22(9), 643–645 (2010).
[Crossref]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-nickel films,” IEEE Photon. Technol. Lett. 2(4), 253–256 (1990).
[Crossref]

M. N. Zervas, “Surface plasmon-polariton fiber-optic polarizers using thin-chromium films,” IEEE Photon. Technol. Lett. 2(8), 597–599 (1990).
[Crossref]

IEICE Trans. Electron. (1)

J. Shibayama, “Numerical analysis of waveguide-based surface plasmon resonance sensors with adsorbed layer using two- and three-dimensional beam-propagation methods,” IEICE Trans. Electron. E90-C(1), 95–101 (2007).
[Crossref]

J. Nanophoton. (1)

S. J. Pearce, M. E. Pollard, S. Oo, R. Q. Chen, S. Kalsi, and M. D. B. Charlton, “Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy,” J. Nanophoton. 8(1), 1–11 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. B 64(3), 274–279 (1974).
[Crossref]

Nat. Photon. (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1(11), 641–648 (2007).
[Crossref]

Nat. Photon. Lett. (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photon. Lett. 2(8), 496–500 (2008).
[Crossref]

Opt. Express (1)

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express 16(25), 20228–20240 (2008).
[Crossref]

Opt. Lett. (6)

Opt. Quant. Electron. (1)

J. Čtyroký, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quant. Electron. 29(2), 301–311 (1997).
[Crossref]

Phys. Rev. B (3)

R. Quidant, C. Girard, J. C. Webber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69(085407), 1–7 (2004).
[Crossref]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(075405), 1–11 (2005).
[Crossref]

Phys. Rev. B. (1)

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B. 71(165431), 1–9 (2005).
[Crossref]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 48(26), 1927–1930 (1981).
[Crossref]

Sensor. Actuat. B-Chem. (2)

J. Čtyroký, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensor. Actuat. B-Chem. 54(1–2), 66–73 (1999).
[Crossref]

R. Levy and S. Ruschin, “SPR waveguide sensor based on transition of modes at abrupt discontinuity,” Sensor. Actuat. B-Chem. 124(2), 459–465 (2007).
[Crossref]

Z. Phys. (1)

A. Otto, “Excitation by light of ω+ and ω− surface plasma waves in thin metal layers,” Z. Phys. 219(4), 227–233 (1969).
[Crossref]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

H. J. M. Kreuwel, P. V. Lambeck, J. M. M. Beltman, and Th. J. A. Popma, “Mode coupling in multilayered structures applied to a chemical sensor and a wavelength-selective directional couplers,” in Proceedings of Fourth European Conference on Integrated Optics (ECIO, 1987), pp. 171–220.

F. Peyskens, A. Z. Subramanian, A. Dhakal, N. Le Thomas, and R. Baets, “Enhancement of Raman scattering efficiency by a metallic nano-antenna on top of a high index contrast waveguide,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO, 2013), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) 3D schematic of composite plasmonic waveguide and its cross-sections in the (b) (y–z) plane and (c) (x–y) plane (dimensions are shown out of scale).

Fig. 2
Fig. 2

Cross-sections of the y-component of the electric field magnitude for the structure with a superstrate index of 1.4 in (a) a purely dielectric mode (DM) in a dielectric waveguide in the z < 0 and z > L regions. In a (b–d) the gold coated 0 < z < L region (b) hybrid dielectric/plasmonic mode (HDM), (c) SPP-s and (d) SPP-a bounds have been calculated by the FEM using COMSOL 4.3b with Matlab module. Insets (c) and (d) show the zoomed gold region and nearby regions.

Fig. 3
Fig. 3

Evolution of the dominant y-component of electric field magnitudes for quasi-transverse magnetic modes at resonance having superstrate index of 1.365, and far from it, at low superstrate index: 1.3 and high superstrate index 1.44 as labeled on the figure accordingly for DM, HDM, SPP-s and SPP-a guided modes.

Fig. 4
Fig. 4

Variation of (a) effective refractive indices and (b) modal attenuation coefficients α in the gold-coated region 0 < z < L with n3; (c) zoomed effective indices in the region enclosed in (a). Note: The superstrate index, n3 of maximum HDM propagation loss is labelled in (b).

Fig. 5
Fig. 5

Calculated expansion coefficients between the DM in region 0 and the eigenmodes in regions 1, at z = 0 (blue) and similarly between the modes in regions 1 and 2 at z = L (red). From Eqs. (910): (a), (c), (e) amplitude and (b), (d), (f) phase. Note: The superstrate index, n3 where the HDM mode is most strongly excited is labeled in (a).

Fig. 6
Fig. 6

Ratio of power in region 1 (P1) to power in region 0 (P0) at z = 0.

Fig. 7
Fig. 7

(a) Calculated optical transmittance for L = 2mm based on our model presented in this paper compared to Fig. 7(c) from [10] and of L = 1mm; (b) comparison of L = 0, 10, 20, 50 and 100μm interaction lengths.

Fig. 8
Fig. 8

(a) Calculated transmittance as a function of the gold length L in the zones: (a) I, (b) III and (c) II, for the indices of n3.

Fig. 9
Fig. 9

Mapped surface intensity: (a) y component, (b) z component and (c) x component based on Eq. (15) along 50μm gold length for a superstrate index of 1.44 and (d) integrated surface intensity and transmittance for a L = 200μm gold length vs. n3. Note: The superstrate indices, n3 which yield the minimum in transmittance and the maximum in integrated surface intensity are labeled in (d).

Fig. 10
Fig. 10

Calculated surface intensity profiles at x = 0 and along L = 100μm based on Eq. (15) in zones: (a) I, (b) III and (c) II.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

N eff = ( β ) λ / ( 2 π )
α = 0.2 log ( e ) ( β )
E ξ i 0 = γ = i , j , m E ξ γ 1 ; H ξ i 0 = γ = i , j , m H ξ γ 1 .
( E i 0 × H γ 1 ) z ( E γ 1 × H i 0 ) z dxdy = ( E γ 1 × H γ 1 ) z + ( E γ 1 × H γ 1 ) z dxdy
E δ ( x , y , z ) = a δ ¯ δ ( x , y ) exp ( j β δ z )
H δ ( x , y , z ) = a δ ¯ δ ( x , y ) exp ( j β δ z )
a i 0 ξ i 0 = γ = i , j , m a γ 1 ξ γ 1 ; a i 0 ξ i 0 = γ = i , j , m a γ 1 ξ γ 1 .
P = 1 / 2 ( ¯ × ¯ * ) z dxdy .
c i 0 , γ 1 = a γ 1 / a i 0 = N i 0 ( I i 0 , γ 1 + I γ 1 , i 0 ) / ( 2 I γ 1 , γ 1 N γ 1 )
c γ 1 , i 2 = ( I γ 1 , i 2 + I i 2 , γ 1 ) exp ( j ( β γ 1 β i 2 ) L ) / ( 2 I i 2 , i 2 )
a i 2 = c i 0 , γ 1 a i 0 c γ 1 , i 2
A i 2 N i 2 = c i 0 , γ 1 A i 0 N i 0 c γ 1 , i 2
Transmittance ( z = L ) = | A i 2 / A i 0 | 2 = | γ = i , j , m c i 0 , γ 1 c γ 1 , i 2 ( N i 0 / N i 2 ) | 2
T = | γ 1 = i , j , m C γ 1 exp ( ι α γ 1 L ) | 2
I ( x , y s , z ) = | E ( x , y s , z ) | 2 = | γ = i , j , m c i 0 , γ 1 γ 1 ( x , y s , z ) | 2 .
a i 0 a γ 1 ( ¯ i 0 × ¯ γ 1 ) z + ( ¯ γ 1 × ¯ i 0 ) z dxdy = a γ 1 2 ( ¯ γ 1 × ¯ γ 1 ) z + ( ¯ γ 1 × ¯ γ 1 ) z dxdy
a i 0 ( I i 0 , γ 1 + I γ 1 , i 0 ) = a γ 1 2 I γ 1 , γ 1
a γ 1 = a i 0 ( I i 0 , γ 1 + I γ 1 , i 0 ) / ( 2 I γ 1 , γ 1 )
I i , γ = ( ¯ i × ¯ γ ) z dxdy = ( x i y γ y i x γ ) z dxdy
N δ = ( 2 / ( I δ , δ ) ) 1 / 2
A γ 1 N γ 1 = A i 0 N i 0 ( I i 0 , γ 1 + I γ 1 , i 0 ) / ( 2 I γ 1 , γ 1 )

Metrics