Abstract

We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering

Mattia Pagani, David Marpaung, Duk-Yong Choi, Steve J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 22(23) 28810-28818 (2014)

Brillouin-based phase shifter in a silicon waveguide

Luke McKay, Moritz Merklein, Alvaro Casas Bedoya, Amol Choudhary, Micah Jenkins, Charles Middleton, Alex Cramer, Joseph Devenport, Anthony Klee, Richard DeSalvo, and Benjamin J. Eggleton
Optica 6(7) 907-913 (2019)

Integrated waveguide Bragg gratings for microwave photonics signal processing

Maurizio Burla, Luis Romero Cortés, Ming Li, Xu Wang, Lukas Chrostowski, and José Azaña
Opt. Express 21(21) 25120-25147 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
    [Crossref]
  4. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  5. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev. 7(4), 506–538 (2013).
    [Crossref]
  6. R. J. Mailloux, Phased Array Antenna Handbook, (Artech House, 2005).
  7. R. Minasian, “Photonic Signal Processing of Microwave Signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  8. M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett. 39(20), 5854–5857 (2014).
    [Crossref] [PubMed]
  9. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [Crossref]
  10. M. Pagani, D. Marpaung, and B. J. Eggleton, “Ultra-wideband microwave photonic phase shifter with configurable amplitude response,” Opt. Lett. 39(20), 5854–5857 (2014).
    [Crossref] [PubMed]
  11. A. Meehan and M. Connelly, “Slow light based microwave photonic phase shifter using coherent population oscillations in a bulk tensile-strained semiconductor optical amplifier,” in Proc. of the 25th IET ISSC 2014/CIICT 2014 (IET, 2014), pp. 328–330.
    [Crossref]
  12. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [Crossref] [PubMed]
  13. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
    [Crossref] [PubMed]
  14. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
    [Crossref] [PubMed]
  15. H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
    [Crossref] [PubMed]
  16. M. Pagani, D. Marpaung, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22(23), 28810–28818 (2014).
    [Crossref] [PubMed]
  17. I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
    [Crossref] [PubMed]
  18. A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
    [Crossref]
  19. H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
    [Crossref]
  20. H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
    [Crossref]
  21. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
    [Crossref] [PubMed]
  22. B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
    [Crossref] [PubMed]
  23. MicroChem Corp, http://www.microchem.com/Prod-SU-8_KMPR.htm
  24. L. Arques, A. Carrascosa, V. Zamora, A. Díez, J. L. Cruz, and M. V. Andrés, “Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip,” Opt. Lett. 36(17), 3452–3454 (2011).
    [Crossref] [PubMed]
  25. H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
    [Crossref]
  26. I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor, “Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure,” Opt. Lett. 39(16), 4962–4965 (2014).
    [Crossref] [PubMed]
  27. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [Crossref] [PubMed]
  28. G. Lifante, Integrated Photonics Fundamentals (John Wiley and Sons, 2003).

2014 (5)

2013 (4)

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

2012 (2)

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
[Crossref] [PubMed]

2011 (5)

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

L. Arques, A. Carrascosa, V. Zamora, A. Díez, J. L. Cruz, and M. V. Andrés, “Excitation and interrogation of whispering-gallery modes in optical microresonators using a single fused-tapered fiber tip,” Opt. Lett. 36(17), 3452–3454 (2011).
[Crossref] [PubMed]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19(22), 21475–21484 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

R. Minasian, “Photonic Signal Processing of Microwave Signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

2005 (1)

2002 (1)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Abargues, R.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor, “Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure,” Opt. Lett. 39(16), 4962–4965 (2014).
[Crossref] [PubMed]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

Albert, S.

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

Almuneau, G.

Andrés, M. V.

Arques, L.

Barrera, D.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

Burla, M.

Capmany, J.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Carrascosa, A.

Chirvony, V. S.

Choi, D. Y.

Cruz, J. L.

De Geyter, B.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

de Mello Donega, C.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Díez, A.

Ding, Y.

Eggleton, B. J.

Fernández-Pousa, C. R.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

Gasulla, I.

Gordillo, H.

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

Grodzinska, D.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Heideman, R.

Hens, Z.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Hoekman, M.

Houtepen, A. J.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Hvam, J. M.

Justo, Y.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Khan, M. R.

Kjær, R.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Lambert, K.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Larrue, A.

Leaird, D. E.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Leinse, A.

Liu, L.

Lloret, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Long, C. M.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Marpaung, D.

Martínez-Pastor, J.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

Martínez-Pastor, J. P.

I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor, “Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure,” Opt. Lett. 39(16), 4962–4965 (2014).
[Crossref] [PubMed]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

Meijerink, A.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Minasian, R.

R. Minasian, “Photonic Signal Processing of Microwave Signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

Mora, J.

Moreels, I.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Mørk, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ou, H.

Pagani, M.

Peng, X.

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Pu, M.

Ricchiuti, A. L.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

Rodríguez-Canto, P. J.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

Rodríguez-Cantó, P. J.

I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor, “Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure,” Opt. Lett. 39(16), 4962–4965 (2014).
[Crossref] [PubMed]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

Roeloffzen, C.

Sales, S.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

Sancho, J.

Seo, D. S.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Shahoei, H.

Smet, P. F.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Song, M. H.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Suárez, I.

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

I. Suárez, A. Larrue, P. J. Rodríguez-Cantó, G. Almuneau, R. Abargues, V. S. Chirvony, and J. P. Martínez-Pastor, “Efficient excitation of photoluminescence in a two-dimensional waveguide consisting of a quantum dot-polymer sandwich-type structure,” Opt. Lett. 39(16), 4962–4965 (2014).
[Crossref] [PubMed]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Quantum-dot double layer polymer waveguides by evanescent light coupling,” J. Lightwave Technol. 31(15), 2515–2525 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

van der Poel, M.

Van Thourhout, D.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Vanmaekelbergh, D.

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Weiner, A. M.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Wu, R.

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

Xue, W.

Yao, J.

Yu, W. W.

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

Yvind, K.

Zamora, V.

Zhuang, L.

ACS Nano (1)

B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P. F. Smet, D. Van Thourhout, A. J. Houtepen, D. Grodzinska, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh, and Z. Hens, “The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots,” ACS Nano 5(1), 58–66 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl. 41(13), 2368–2371 (2002).
[Crossref] [PubMed]

IEEE Photon. J. (1)

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, and J. P. Martínez-Pastor, “Color tuning and white light by dispersing CdSe, CdTe, and CdS in PMMA nanocomposite waveguides,” IEEE Photon. J. 5(2), 2201412 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. H. Song, C. M. Long, R. Wu, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,” IEEE Photon. Technol. Lett. 23(21), 1618–1620 (2011).
[Crossref]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

A. L. Ricchiuti, I. Suárez, D. Barrera, P. J. Rodríguez-Canto, C. R. Fernández-Pousa, R. Abargues, S. Sales, J. Martínez-Pastor, and J. Capmany, “Colloidal quantum dots-PMMA waveguides as integrable microwave photonic phase shifter,” IEEE Photon. Technol. Lett. 26(4), 402–404 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

R. Minasian, “Photonic Signal Processing of Microwave Signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Lightwave Technol. (3)

J. Nanomater. (1)

H. Gordillo, I. Suárez, R. Abargues, P. J. Rodríguez-Cantó, S. Albert, and J. P. Martínez-Pastor, “Polymer/QDs nanocomposites for waveguiding applications,” J. Nanomater. 2012, 960201 (2012).
[Crossref]

Laser & Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Nanotechnology (1)

I. Suárez, H. Gordillo, R. Abargues, S. Albert, and J. Martínez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22(43), 435202 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Other (4)

R. J. Mailloux, Phased Array Antenna Handbook, (Artech House, 2005).

A. Meehan and M. Connelly, “Slow light based microwave photonic phase shifter using coherent population oscillations in a bulk tensile-strained semiconductor optical amplifier,” in Proc. of the 25th IET ISSC 2014/CIICT 2014 (IET, 2014), pp. 328–330.
[Crossref]

MicroChem Corp, http://www.microchem.com/Prod-SU-8_KMPR.htm

G. Lifante, Integrated Photonics Fundamentals (John Wiley and Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic view of the waveguides studied: a) PMMA based waveguide, b) SU8 monolayer waveguide and c) SU8 bilayer waveguide.
Fig. 2
Fig. 2 Real (red solid line) and imaginary (blue solid line) parts of the PbS-SU8 (ff = 0.01) refractive index and real (red dashed line) part of the SU8 refractive index. The inset shows the absorption spectra of the PbS-SU8 QDs at pump (980 nm) and probe (1550 nm) wavelengths.
Fig. 3
Fig. 3 Measurement laboratory setup. OPM: optical power meter, RF: radiofrequency, TLS: tunable laser source, PD: photodetector, TF: Tapered Fiber tip, WG: waveguide, LCA: light component analyzer.
Fig. 4
Fig. 4 a) Phase shifting at 25 GHz suffered by the MW signal for different waveguides with different widths and lengths and b) normalized RF amplitude response as a function of the microwave frequency for different waveguides structures with length 6 mm when they are pumped by the 980 nm laser under the highest output power. c) Phase shifting as a function of the microwave frequency and d) amplitude responses as a function of the microwave frequency in the 20 μm wide 6 mm long SU8 bilayer waveguide by pumping with the 980 nm laser for different coupled powers to the input edge of the structure normalized to the smallest pump power trace.
Fig. 5
Fig. 5 Phase shift as a function of the pump power. Symbols correspond to experimental values and the red continuous line to the model output data.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δφ=ΔkL= Ω c Δ n g L,
Δ n g = 1 2 c τ s Γ g 0 ( η·P P sat ) ( 1+ η·P P sat ) 3 ,
g= Γ g 0 ( 1+ P P sat ) .
dP dz =( gα )P,
d P P dz = α P P P .

Metrics