Abstract

Metamaterials with hyperbolic dispersion based on metallic nanorod arrays provide a flexible platform for the design of bio- and chemical sensors and nonlinear devices, allowing the incorporation of functional materials into and onto the plasmonic metamaterial. Here, we have investigated, both analytically and numerically, the dependence of the optical response of these metamaterials on refractive index variations in commonly used experimental sensing configurations, including transmission, reflection, and total internal reflection. The strategy for maximising refractive index sensitivity for different configurations has been considered, taking into account contributions from the superstrate, embedding matrix, and the metal itself. It is shown that the sensitivity to the refractive index variations of the host medium is at least 2 orders of magnitude higher than to the ones originating from the superstrate. It is also shown that the refractive index sensitivity increases for higher-order unbound and leaky modes of the metamaterial sensor. The impact of the transducer’s thickness was also analysed showing significant increase of the sensitivity for the thinner metamaterial layers (down to few 0.01 fraction of wavelength and, thus, requiring less analyte) as long as modes are supported by the structure. In certain configurations, both TE and TM-modes of the metamaterial transducer have comparable sensitivities. The results provide the basis for the design of new ultrasensitive chemical and biosensors outperforming both surface plasmon polaritons and localised surface plasmons based transducers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes

Leiming Wu, Jun Guo, Hailin Xu, Xiaoyu Dai, and Yuanjiang Xiang
Photon. Res. 4(6) 262-266 (2016)

Nanorod-mediated surface plasmon resonance sensor based on effective medium theory

Junxue Fu, Bosoon Park, and Yiping Zhao
Appl. Opt. 48(23) 4637-4649 (2009)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  4. B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
    [Crossref]
  5. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  6. A. V. Zayats and S. Maier, Active Plasmonics and Tunable Plasmonic Metamaterials (Wiley, 2014).
  7. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  8. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
    [Crossref] [PubMed]
  9. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
    [Crossref]
  10. P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
  11. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  12. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
    [Crossref] [PubMed]
  13. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  14. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  15. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
  16. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  17. N. Vasilantonakis, M. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides,” Laser Photon. Rev. (2015).
  18. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [Crossref] [PubMed]
  19. M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
    [Crossref] [PubMed]
  20. W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
    [Crossref]
  21. V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
    [Crossref] [PubMed]
  22. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
    [Crossref]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
    [Crossref]
  25. K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).
  26. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am. 58(3), 380–388 (1968).
    [Crossref]
  27. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
    [Crossref] [PubMed]
  28. H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
    [Crossref] [PubMed]
  29. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
    [Crossref] [PubMed]
  30. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
    [Crossref] [PubMed]

2015 (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

2014 (3)

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

2013 (2)

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

2012 (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

2011 (2)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

2009 (1)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

2007 (3)

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2006 (2)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

2004 (1)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

1998 (1)

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (1)

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atkinson, R.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Cheng, T.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, J.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Dickson, W.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Evans, P.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Feng, J.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

Hafner, J. H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hansen, W. N.

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Hell, H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
[Crossref]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Krasavin, A. V.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

Liao, H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

McPhillips, J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Mehta, V.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Murphy, A.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Narimanov, E. E.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Nasir, M. E.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Nehl, C. L.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nikitin, P. I.

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
[Crossref]

O’Connor, D.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Pacifici, D.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Palmore, G. T. R.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Pollard, R. J.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

Rhieu, S. Y.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Roelke, A.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Siu, V. S.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tsai, K.-T.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

Wang, H.-H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Wang, J.-K.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wang, Y.-L.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Wardley, W. P.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wells, B. M.

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

Wurtz, G. A.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Yakovlev, V. V.

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Zayats, A. V.

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Adv. Mater. (2)

M. E. Nasir, W. Dickson, G. A. Wurtz, W. P. Wardley, and A. V. Zayats, “Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials,” Adv. Mater. 26(21), 3532–3537 (2014).
[Crossref] [PubMed]

V. V. Yakovlev, W. Dickson, A. Murphy, J. McPhillips, R. J. Pollard, V. A. Podolskiy, and A. V. Zayats, “Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials,” Adv. Mater. 25(16), 2351–2356 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Nano Lett. (4)

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, H. Hell, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14(9), 4971–4976 (2014).

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7(5), 1297–1303 (2007).
[Crossref] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9(12), 4428–4433 (2009).
[Crossref] [PubMed]

Nanomedicine (Lond) (1)

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Opt. Commun. (1)

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89(3), 035111 (2014).
[Crossref]

W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B 76(11), 115411 (2007).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).

Science (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators B Chem. 4, 299–304 (1983).
[Crossref]

Other (4)

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).

A. V. Zayats and S. Maier, Active Plasmonics and Tunable Plasmonic Metamaterials (Wiley, 2014).

N. Vasilantonakis, M. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides,” Laser Photon. Rev. (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Left: Schematic of the metamaterial transducer made of an array of Au nanorods embedded in a host environment (analyte); middle: Schematic of the typical experimental realization of refractive index sensing experiments in the reflection or transmission geometry; right: Schematics of the unit cell of the metamaterial. (b) Effective permittivities of the metamaterial in a water-like analyte (nh = 1.33) with the nanorod period d = 100 nm and radius r = 40 nm. The green area shows the hyperbolic dispersion regime where ε z eff < 0. (c-f) Transmittance and reflectance dispersions for (c),(e) TM- and (d),(f) TE-polarized light. Geometry is the same as in (b). The substrate is glass (nsub = 1.5) and superstrate is water (nsup = 1.33). Height of nanorods is l = 400 nm. In all dispersions the TIR occurs at an angle of incidence of 62.46° indicated with dashed line.

Fig. 2
Fig. 2

The spectral dependence of the effective permittivity variations with respect to (a) ε h , (b) ε h , (c) ε Au and (d) ε Au modifications for a filling factor of p = 0.5. The dependence of (e) real and (f) imaginary parts of the effective permittivity on ε h variations. Only filling factors below 0.6 are shown since the effective medium approximation ceases to be accurate at high filling factors.

Fig. 3
Fig. 3

The mode frequency shift with (a),(b) ε h and (c),(d) ε Au variations: (a),(c) the first five modes (q = 1-5) for l = 400 nm and (b),(d) the fundamental mode (q = 1) for various transducer thicknesses. Geometry is the same as in Fig. 1(b).

Fig. 4
Fig. 4

Spectral and angular dependencies of the intensity figure of merit (FoMI) for the changes of the refractive index of superstrate (a,d), host medium (b,e) and both (c,f) for (a-c) TM-polarization and (d-f) TE-polarization. Superstrate light line is also shown (white dashed line). Colour scale is the same for enable comparison. (g) Cross-sections of (a)-(f) at normal incidence. (h) Cross-sections of (a)-(f) tracking the q = 3 mode (horizontal dashed lines) at 1.7 eV for TM-polarization and q = 2 mode at 1.4 eV for TE-polarization. (i) Cross-sections of (a)-(f) at angles where highest sensitivity is observed (vertical dashed lines).

Fig. 5
Fig. 5

Spectral and angular dependencies of the intensity figure of merit (FoMI) with the changes of the absorption of superstrate (a), host medium (b) and both (c) for TM-polarization. Superstrate light line is also shown (white dashed line). Colour scale is the same for enable comparison. (d) Cross-sections of (a)-(c) at normal incidence (vertical dashed lines). (e) Cross-sections of (a)-(c) tracking the q = 3 mode (horizontal dashed lines) at 1.7 eV. (f) Cross-sections of (a)-(c) at angles where highest sensitivity is observed (vertical dashed lines).

Fig. 6
Fig. 6

Spectral and angular dependencies of the intensity figure of merit (FoMI) with the changes of (a) refractive index and (b) absorption of Au for TM-polarization. Superstrate light line is also shown (white dashed line). Colour scale is the same for enable comparison. (c) Cross-sections of (a)-(b) at normal incidence (vertical dashed lines). (d) Cross-sections of (a)-(b) tracking the q = 3 mode (horizontal dashed lines) at 1.7 eV. (f) Cross-sections of (a)-(b) at angles where highest sensitivity is observed (vertical dashed lines).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε x,y eff = p ε Au ε h + ε h (1p) ε ˜ p ε h +(1p) ε ˜ ,
ε z eff =p ε Au +(1p) ε h ,
ε x,y eff ε h =i ε x,y eff ε h = P ε Au +2 ε h P ε h + ε Au P ε h P ε Au + ε h (P ε h + ε Au ) 2 , ,
ε x,y eff ε Au =i ε x,y eff ε Au = ε h [ P P ε h + ε Au P ε Au + ε h (P ε h + ε Au ) 2 ], ,
ε z eff ε h =i ε z eff ε h =1p,
ε z eff ε Au =i ε z eff ε Au =p,
k x 2 = ε z eff k 0 2 ( qπ l ) 2 ( ε z eff ε x,y eff ),
ω q = c 0 k x 2 ε z eff + ( qπ l ) 2 1 ε x,y eff ,
ω q ε h =i ω q ε h = c 0 2 2 ω q [ ( k x ε z eff ) 2 ε z eff ε h + ( qπ l ε x,y eff ) 2 ε x,y eff ε h ]= =i c 0 2 2 ω q [ ( k x ε z eff ) 2 ε z eff ε h + ( qπ l ε x,y eff ) 2 ε x,y eff ε h ],
ω q ε Au =i ω q ε Au = c 0 2 2 ω q [ ( k x ε z eff ) 2 ε z eff ε Au + ( qπ l ε x,y eff ) 2 ε x,y eff ε Au ]= =i c 0 2 2 ω q [ ( k x ε z eff ) 2 ε z eff ε Au + ( qπ l ε x,y eff ) 2 ε x,y eff ε Au ],

Metrics