Abstract

We demonstrate lensless quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED matrix. Based on the multi-wavelength phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of 3.72μm and an axial resolution of 5μm, across a wide field-of-view of 24mm2. We experimentally demonstrate the success of our method by imaging cheek cells, micro-beads, and fertilized eggs of Parascaris equorum. Such high-throughput and miniaturized imaging device can provide a cost-effective tool for telemedicine applications and point-of-care diagnostics in resource-limited environments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-exposure quantitative phase imaging in color-coded LED microscopy

Wonchan Lee, Daeseong Jung, Suho Ryu, and Chulmin Joo
Opt. Express 25(7) 8398-8411 (2017)

Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging

Donghak Lee, Suho Ryu, Uihan Kim, Daeseong Jung, and Chulmin Joo
Biomed. Opt. Express 6(12) 4912-4922 (2015)

Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm

Martín Sanz, José Angel Picazo-Bueno, Javier García, and Vicente Micó
Opt. Express 23(16) 21352-21365 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref] [PubMed]
  3. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref] [PubMed]
  4. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  5. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  6. B. Bhaduri, K. Tangella, and G. Popescu, “Fourier phase microscopy with white light,” Biomed. Opt. Express 4, 1434–1441 (2013).
    [Crossref]
  7. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).
  8. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
    [Crossref] [PubMed]
  9. J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39, 5634–5637 (2014).
    [Crossref] [PubMed]
  10. M. R. Teague, “Deterministic phase retrieval: a green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [Crossref]
  11. S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37, 707–709 (2012).
    [Crossref] [PubMed]
  12. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
    [Crossref] [PubMed]
  13. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
    [Crossref] [PubMed]
  14. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
    [Crossref] [PubMed]
  15. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
    [Crossref]
  16. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20 – 32 (2015).
    [Crossref]
  17. A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
    [Crossref]
  18. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
    [Crossref] [PubMed]
  19. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref] [PubMed]
  20. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
    [Crossref] [PubMed]
  21. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
    [Crossref]
  22. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  23. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
    [Crossref] [PubMed]
  24. S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
    [Crossref] [PubMed]
  25. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
    [Crossref] [PubMed]
  26. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photon 7, 739–745 (2013).
    [Crossref]
  27. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
    [Crossref] [PubMed]
  28. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref] [PubMed]
  29. C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22, 9220–9244 (2014).
    [Crossref] [PubMed]
  30. C. Zuo, Q. Chen, H. Li, W. Qu, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization,” Opt. Express 22, 18310–18324 (2014).
    [Crossref] [PubMed]
  31. L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40, 1976–1979 (2015).
    [Crossref] [PubMed]
  32. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
    [Crossref] [PubMed]
  33. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
    [Crossref] [PubMed]
  34. J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
    [Crossref]
  35. C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation,” Opt. Express 22, 17172–17186 (2014).
    [Crossref] [PubMed]
  36. A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53, J1–J6 (2014).
  37. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986).
    [Crossref]
  38. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Academic Press, 1999).
  39. A. J. Devaney, “Inverse-scattering theory within the rytov approximation,” Opt. Lett. 6, 374–376 (1981).
    [Crossref] [PubMed]
  40. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985).
    [Crossref]

2015 (2)

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20 – 32 (2015).
[Crossref]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40, 1976–1979 (2015).
[Crossref] [PubMed]

2014 (8)

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22, 9220–9244 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, H. Li, W. Qu, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization,” Opt. Express 22, 18310–18324 (2014).
[Crossref] [PubMed]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39, 5634–5637 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation,” Opt. Express 22, 17172–17186 (2014).
[Crossref] [PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53, J1–J6 (2014).

2013 (6)

2012 (2)

2011 (4)

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

2010 (3)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
[Crossref] [PubMed]

L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

2005 (2)

2000 (1)

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

1998 (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

1986 (1)

1985 (1)

1983 (1)

1981 (1)

1972 (1)

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Alieva, T.

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Asundi, A.

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20 – 32 (2015).
[Crossref]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40, 1976–1979 (2015).
[Crossref] [PubMed]

C. Zuo, Q. Chen, H. Li, W. Qu, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization,” Opt. Express 22, 18310–18324 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation,” Opt. Express 22, 17172–17186 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22, 9220–9244 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

Badizadegan, K.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Bao, P.

Barbastathis, G.

Barty, A.

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

Bhaduri, B.

Bishara, W.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

Chen, Q.

Choi, W.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Colomb, T.

Connolly, B.

Cuche, E.

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Depeursinge, C.

Devaney, A. J.

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Ding, H.

Eikema, K. S. E.

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Emery, Y.

Fang-Yen, C.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Feng, S.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

Fienup, J. R.

Gerchberg, R.

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Gillette, M. U.

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

Gorthi, S. S.

Gureyev, T. E.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photon 7, 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

Huang, L.

Idir, M.

Isikman, S. O.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Academic Press, 1999).

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Kim, K.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Kim, M.

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

Kou, S. S.

Lau, R.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

Lee, S. A.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Li, H.

Li, X.

Lo, C.-M.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Magistretti, P. J.

Mann, C.

Marquet, P.

Mavandadi, S.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

Millet, L.

Mir, M.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Neureuther, A.

Noom, D. W. E.

Nugent, K.

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

Nugent, K. A.

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Osten, W.

Ou, X.

Ozcan, A.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Paganin, D.

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

Paganin, D. M.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

Park, Y.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Pavlov, K. M.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

Pedrini, G.

Pham, H.

Popescu, G.

Qu, W.

Ramchandran, K.

Rappaz, B.

Roberts, A.

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

Rodrigo, J. A.

Rogers, J.

Schmalz, J. A.

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

Schonbrun, E.

Sczyrba, M.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Shanker, A.

Sheppard, C. J. R.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Academic Press, 1999).

Streibl, N.

Sung, Y.

Tangella, K.

Teague, M. R.

Tian, L.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Unarunotai, S.

Wackerman, C. C.

Waller, L.

Wang, Z.

Witte, S.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photon 7, 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

Yu, F. W.

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

Yu, L.

Yu, Y.

Zhang, F.

Zheng, G.

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photon 7, 739–745 (2013).
[Crossref]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

Zuo, C.

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20 – 32 (2015).
[Crossref]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40, 1976–1979 (2015).
[Crossref] [PubMed]

C. Zuo, Q. Chen, H. Li, W. Qu, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization,” Opt. Express 22, 18310–18324 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22, 9220–9244 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation,” Opt. Express 22, 17172–17186 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

J. Biomed. Opt. (1)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Lab Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Nat Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Methods 4, 717–719 (2007).
[Crossref] [PubMed]

Nat. Photon (2)

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photon 8, 256–263 (2014).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photon 7, 739–745 (2013).
[Crossref]

Opt. Commun (1)

A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun 175, 329 – 336 (2000).
[Crossref]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Express (9)

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref] [PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
[Crossref] [PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications,” Opt. Express 21, 5346–5362 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22, 9220–9244 (2014).
[Crossref] [PubMed]

C. Zuo, Q. Chen, H. Li, W. Qu, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization,” Opt. Express 22, 18310–18324 (2014).
[Crossref] [PubMed]

L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
[Crossref] [PubMed]

C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (slim),” Opt. Express 19, 1016–1026 (2011).
[Crossref] [PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation,” Opt. Express 22, 17172–17186 (2014).
[Crossref] [PubMed]

Opt. Laser Eng. (1)

C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective,” Opt. Laser Eng. 71, 20 – 32 (2015).
[Crossref]

Opt. Lett. (10)

S. S. Gorthi and E. Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37, 707–709 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38, 3538–3541 (2013).
[Crossref] [PubMed]

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
[Crossref] [PubMed]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrastimaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref] [PubMed]

P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Illumination coherence engineering and quantitative phase imaging,” Opt. Lett. 39, 5634–5637 (2014).
[Crossref] [PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40, 1976–1979 (2015).
[Crossref] [PubMed]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref] [PubMed]

A. J. Devaney, “Inverse-scattering theory within the rytov approximation,” Opt. Lett. 6, 374–376 (1981).
[Crossref] [PubMed]

Optik (1)

R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Phys. Rev. A (1)

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84, 023808 (2011).
[Crossref]

Phys. Rev. Lett. (1)

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. O. Isikman, W. Bishara, S. Mavandadi, F. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Natl. Acad. Sci. U.S.A. 108, 7296–7301 (2011).
[Crossref] [PubMed]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. U.S.A. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Other (2)

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Academic Press, 1999).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).

Supplementary Material (2)

» Media 1: AVI (7627 KB)     
» Media 2: AVI (5679 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Lensfree microscopy and tomography platform. (a) Schematics explaining the principle of lensless imaging. Typical values: L = 32.5mm, z = 300μm~1.6mm. (b) Photograph of the microscope. The system is consisting of a CMOS imaging sensor and a LED matrix controlled by a MCU, where each LED can provide RGB narrow-band illumination. The whole device is powered through the USB connection.

Fig. 2
Fig. 2

The schematic diagram of the multi-wavelength phase retrieval and image reconstruction. See text for details. The sample is illuminated at different illumination wavelengths (R,G,B) (a), and the green channel image combining with axial intensity derivative estimated are used for TIE phase reconstruction (b). The TIE-reconstructed phase is then refined by a Gerchberg–Saxton–type iterative phase retrieval algorithm (c). Finally, the retrieved complex field is propagated back to the object plane (d) to get a sharp in-focus image, as shown in (e). Scale bar 400μm.

Fig. 3
Fig. 3

Resolution analysis and reconstruction result of a 2μm silica bead: (a) recorded diffraction pattern (Red channel), (b) upsampled version of (a), (c) reconstructed in-focus intensity image, (d) Axial and transverse profiles (dotted black and dashed red lines) of the volumetric reconstruction. The FWHM values for the lateral line-profile is 3.72μm, while the axial FWHM is approximately 51μm. (e) 3D representation of the reconstructed volumetric intensity distribution.

Fig. 4
Fig. 4

Quantitative phase reconstruction of cheek cells. The central image shows the captured raw diffraction pattern over entire FOV (~ 24mm2). The surrounding sub-images shows the reconstructed intensity and phase images of three different regions (corresponding to the green, red, and blue boxed areas) within the entire imaging area.

Fig. 5
Fig. 5

Tomographic reconstruction of the 2μm silica bead. An LED array sequentially illuminates the sample with different LED elements, and nine typical diffraction patterns captured are shown in (a). The retrieved complex fields are mapped in 3D Fourier space according to Fourier diffraction theory (b–c). Due to the limited pixel resolution abilities, the actual detectable frequencies of our platform only occupy a limited portion of the 3D Ewald sphere (d–e), while the information in the red shaded region is unrecoverable. An iterative non-negative constraint processing method is implemented for filling the rest of 3D space (f–g). And finally a 3D inverse Fourier transform yields 3D tomogram the bead (h). The FWHM value for the lateral line-profile is 3.41μm, while the axial FWHM shrinks to 5μm (i).

Fig. 6
Fig. 6

Tomographic reconstruction of randomly distributed 3μm beads. (a) Raw full FOV image captured with vertical illumination. (b) A small ROI cropped from the whole FOV, the inset shows the diffraction pattern of the region highlighted by the red-dotted box under oblique illumination (by turning on the top-left corner LED). (c) Back-propagated intensity image with vertical illumination. (d,e) Tomographically reconstructed z-sections at 0 and −20μm, respectively. (f) 3D volometirc distribution of the six beads.

Fig. 7
Fig. 7

3D refractive index measurement of a 20μm PMMA bead. (a) Quantitative phase retrieved at orthogonal illumination, from the three intensity images captured at different wavelengths (shown on the left); (b) Phase profile along the center of the bead, comparison between measurement and ideal model; (c-d) Cross-sectional slices of refractive index distribution of the PMMA bead in the x-y and x-z planes, respectively. The kxky and kykz slice of the object function in 3D Fourier space after the iterative non-negative constraint algorithm are shown on the left of (c).

Fig. 8
Fig. 8

3D tomographic reconstruction of a slice of the uterus of Parascaris equorum. The first row shows the recovered refractive index depth sections (a), absorption coefficients depth sections (b), and intensity distributions reconstructed from the orthogonal illumination (c) at z= −10.6, 0, and 26.4μm. The second row shows the corresponding x-z views of 3D stacks (scale ratio of z to x axis is 1:2), depicted by the red dashed line in (a). The arrows point out the dust particle located at a higher layer (at z=168.4μm). The third row shows the 3D renderings of the refractive index (d) ( Media 1), absorption distribution before (e), and after thresholding (f) ( Media 2) for the boxed area in (a). Scale bar 400μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U z ( x , y ) = exp ( j k z ) j λ z U 0 ( x , y ) exp { j π λ z [ ( x x 0 ) 2 + ( y y 0 ) 2 ] } d x 0 d y 0 ,
k I ( x , y ) z = [ I ( x , y ) ϕ ( x , y ) ] ,
I z = ( Δ z b ) 2 ( I r I g ) ( Δ z r ) 2 ( I b I g ) Δ z r Δ z b ( Δ z b Δ z r ) ,
k I z = 2 ψ ,
( I 1 ψ ) = 2 ϕ .

Metrics