Abstract

In this paper we theoretically investigate a ring resonant cavity obtained by closing on itself a π-shifted fiber Bragg grating, to be used for refractive index sensing applications. Differently from a conventional π-shifted fiber Bragg grating, the spectral structure of this cavity is characterized by an asymmetric splitting doublet composed by a right side resonance having an asymmetric Fano profile and a left side resonance having a symmetric Lorentzian profile. The right side resonance shows a narrower and sharper peak than all the other kinds of resonance achievable with both conventional ring resonators and π-shifted fiber Bragg gratings. A reduction of the resonant linewidth with respect to a conventional π-shifted Fiber Bragg grating and a fiber ring resonator, having the same physical parameters, is theoretically proved, achieving up to five orders of magnitude improvement with respect to the usual ring resonator. Due to these resonance features, the π-shifted Bragg grating ring resonator results suitable for RI sensing applications requiring extremely narrow resonances for high resolution measurements. In particular, by assuming a refractive index sensing to detect the presence of sugar in water, the sensor can show a theoretical resolution better than 10−9 RIU.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of fiber Bragg grating based mode-splitting resonant sensors

Carlo Edoardo Campanella, Lorenzo Mastronardi, Francesco De Leonardis, Pietro Malara, Gianluca Gagliardi, and Vittorio M. N. Passaro
Opt. Express 22(21) 25371-25384 (2014)

Fiber Bragg grating ring resonators under rotation for angular velocity sensing

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro
Appl. Opt. 54(15) 4789-4796 (2015)

High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator

Zhengrui Tu, Dingshan Gao, Meiling Zhang, and Daming Zhang
Opt. Express 25(17) 20911-20922 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
    [Crossref] [PubMed]
  2. S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
    [Crossref]
  3. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref] [PubMed]
  4. A. M. Gillooly, L. Zhang, and I. Bennion, “Quasi-distributed strain sensor incorporating a chirped Moire´ fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(2), 444–446 (2005).
  5. M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” J. Lightwave Technol. 26(12), 1613–1625 (2008).
    [Crossref]
  6. I. Teraoka, “A hybrid filter of Bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
    [Crossref]
  7. K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 22(21), 26032–26041 (2014).
    [Crossref] [PubMed]
  8. C. E. Campanella, L. Mastronardi, F. De Leonardis, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of fiber Bragg grating based mode-splitting resonant sensors,” Opt. Express 22(21), 25371–25384 (2014).
    [Crossref] [PubMed]
  9. C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “Performance of Bragg grating ring resonator as high sensitivity refractive index sensor,” IEEE Fotonica AEIT Italian Conference on Photonics Technologies 2014, pp. 1–4, May 12th-14th, 2014, Naples (Italy).
    [Crossref]
  10. P. Malara, L. Mastronardi, C. E. Campanella, A. Giorgini, S. Avino, V. M. N. Passaro, and G. Gagliardi, “Split-mode fiber Bragg grating sensor for high-resolution static strain measurements,” Opt. Lett. 39(24), 6899–6902 (2014).
    [Crossref] [PubMed]
  11. W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
    [Crossref] [PubMed]
  12. A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
    [Crossref] [PubMed]
  13. A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “EIT in resonator chains: similarities and differences with atomic media,” 34th Winter Colloquium on the Physics of Quantum Electronics (PQE) 2004; January 4–8, 2004; Snowbird, UT; United States.
  14. S. N. Chormaic, Y. Wu, and J. M. Ward, “Whispering gallery mode resonators as tools for non-linear optics and optomechanics,” Proc. SPIE, Laser Resonators, Microresonators, and Beam Control XIV, doi: (2012).
    [Crossref]
  15. C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
    [Crossref] [PubMed]
  16. Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
    [Crossref]
  17. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  18. W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  19. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express 19(12), 11769–11779 (2011).
    [Crossref] [PubMed]
  20. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36(12), 2197–2199 (2011).
    [Crossref] [PubMed]
  21. C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. De Natale, “Localized strain sensing with fiber Bragg-grating ring cavities,” Opt. Express 21(24), 29435–29441 (2013).
    [Crossref] [PubMed]
  22. L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Advanced Applications - Bragg Gratings And And Distributed Sensors (Springer 2000).
  23. A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036619 (2005).
    [Crossref] [PubMed]
  24. F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. N. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
    [Crossref] [PubMed]
  25. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  26. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
    [Crossref] [PubMed]
  27. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref] [PubMed]
  28. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  29. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref]
  30. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Appl. Opt. 37(34), 8120–8128 (1998).
    [Crossref] [PubMed]
  31. R. C. Astle and M. J. Weast, Handbook of Chemistry and Physics, 64th. ed. (CRC Press Inc., 1983).
  32. N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, and H. Tsai, “Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing,” Appl. Opt. 50(28), 5465–5472 (2011).
    [Crossref] [PubMed]
  33. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope”, International Conference on Transparent Optical Networks (ICTON), DOI: , Coventry (United Kingdom) 2–5 July 2012.
    [Crossref]
  34. W. Zhu, T. Shi, Z. Tang, B. Gong, G. Liao, and J. Tully, “Dynamic selective etching: a facile route to parabolic optical fiber nano-probe,” Opt. Express 21(6), 6919–6927 (2013).
    [Crossref] [PubMed]
  35. F. Vollmer and H. G. L. Schwefel, “Taking detection to the limit with optical microcavities: recent advances presented at the 560. WE Heraeus Seminar,” Europ. Phys. J. Sp. Top. 23(10), 1907–1916 (2014).
    [Crossref]

2015 (1)

I. Teraoka, “A hybrid filter of Bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

2014 (4)

2013 (4)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

W. Zhu, T. Shi, Z. Tang, B. Gong, G. Liao, and J. Tully, “Dynamic selective etching: a facile route to parabolic optical fiber nano-probe,” Opt. Express 21(6), 6919–6927 (2013).
[Crossref] [PubMed]

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. De Natale, “Localized strain sensing with fiber Bragg-grating ring cavities,” Opt. Express 21(24), 29435–29441 (2013).
[Crossref] [PubMed]

2012 (2)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

2011 (4)

2010 (3)

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2009 (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

2008 (2)

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” J. Lightwave Technol. 26(12), 1613–1625 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2006 (2)

2005 (3)

A. M. Gillooly, L. Zhang, and I. Bennion, “Quasi-distributed strain sensor incorporating a chirped Moire´ fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(2), 444–446 (2005).

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036619 (2005).
[Crossref] [PubMed]

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

1998 (1)

Armenise, M. N.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope”, International Conference on Transparent Optical Networks (ICTON), DOI: , Coventry (United Kingdom) 2–5 July 2012.
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Avino, S.

P. Malara, L. Mastronardi, C. E. Campanella, A. Giorgini, S. Avino, V. M. N. Passaro, and G. Gagliardi, “Split-mode fiber Bragg grating sensor for high-resolution static strain measurements,” Opt. Lett. 39(24), 6899–6902 (2014).
[Crossref] [PubMed]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. De Natale, “Localized strain sensing with fiber Bragg-grating ring cavities,” Opt. Express 21(24), 29435–29441 (2013).
[Crossref] [PubMed]

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Bennion, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bianucci, P.

Campanella, C. E.

Campopiano, S.

Cella, L.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

Chen, Q.

Chin, M. K.

Chormaic, S. N.

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

S. N. Chormaic, Y. Wu, and J. M. Ward, “Whispering gallery mode resonators as tools for non-linear optics and optomechanics,” Proc. SPIE, Laser Resonators, Microresonators, and Beam Control XIV, doi: (2012).
[Crossref]

Ciminelli, C.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope”, International Conference on Transparent Optical Networks (ICTON), DOI: , Coventry (United Kingdom) 2–5 July 2012.
[Crossref]

Cusano, A.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” J. Lightwave Technol. 26(12), 1613–1625 (2008).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” J. Lightwave Technol. 26(12), 1613–1625 (2008).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

D’Avino, V.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

Darmawan, S.

De Leonardis, F.

C. E. Campanella, L. Mastronardi, F. De Leonardis, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of fiber Bragg grating based mode-splitting resonant sensors,” Opt. Express 22(21), 25371–25384 (2014).
[Crossref] [PubMed]

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. N. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

De Natale, P.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. De Natale, “Localized strain sensing with fiber Bragg-grating ring cavities,” Opt. Express 21(24), 29435–29441 (2013).
[Crossref] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Dell’Olio, F.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope”, International Conference on Transparent Optical Networks (ICTON), DOI: , Coventry (United Kingdom) 2–5 July 2012.
[Crossref]

Fan, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Farrell, G.

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Figotin, A.

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036619 (2005).
[Crossref] [PubMed]

Fisher, N. E.

Flach, S.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gagliardi, G.

Gavrilov, L. R.

Gillooly, A. M.

A. M. Gillooly, L. Zhang, and I. Bennion, “Quasi-distributed strain sensor incorporating a chirped Moire´ fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(2), 444–446 (2005).

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Giorgini, A.

Gong, B.

Hand, J. W.

Huang, Y.

Huang, Y. Y.

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Iadicicco, A.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured chirped fiber Bragg gratings,” J. Lightwave Technol. 26(12), 1613–1625 (2008).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Jackson, D. A.

Jiang, L.

Kivshar, Yu. S.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Lee, R. K.

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Liang, W.

W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liao, G.

Lin, N.

Liu, B.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Liu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Liuzzi, R.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

Lu, Y.

Ma, Y.

Malara, P.

Mario, L. Y.

Mastronardi, L.

McGarvey-Lechable, K.

Miao, Y. P.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Okabe, Y.

Pacelli, R.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

Pannell, C. N.

Passaro, V. M. N.

Perri, A. G.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. N. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Pisco, M.

Poon, J. K. S.

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Semenova, Y.

Shi, T.

Tang, Z.

Teraoka, I.

I. Teraoka, “A hybrid filter of Bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

Troia, B.

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. N. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Tsai, H.

Tully, J.

Vahala, K. J.

Vitebskiy, I.

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036619 (2005).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wang, P.

Wang, S.

Ward, J.

Ward, J. M.

S. N. Chormaic, Y. Wu, and J. M. Ward, “Whispering gallery mode resonators as tools for non-linear optics and optomechanics,” Proc. SPIE, Laser Resonators, Microresonators, and Beam Control XIV, doi: (2012).
[Crossref]

Watkins, A.

Webb, D. J.

Wu, Q.

Wu, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Wu, Y.

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

S. N. Chormaic, Y. Wu, and J. M. Ward, “Whispering gallery mode resonators as tools for non-linear optics and optomechanics,” Proc. SPIE, Laser Resonators, Microresonators, and Beam Control XIV, doi: (2012).
[Crossref]

Xiao, H.

Xu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Xu, R.

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yan, B.

Yan, Z.

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

Yariv, A.

W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yu, C.

Zhang, L.

Zhao, Q. D.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Zhou, K.

Zhu, W.

Zullo, R.

Anal. Chem. (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Detecting ionizing radiation with optical fibers down to biomedical doses,” Appl. Phys. Lett. 103(18), 184102 (2013).
[Crossref]

W. Liang, Y. Y. Huang, R. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

A. M. Gillooly, L. Zhang, and I. Bennion, “Quasi-distributed strain sensor incorporating a chirped Moire´ fiber Bragg grating,” IEEE Photon. Technol. Lett. 17(2), 444–446 (2005).

J. Lightwave Technol. (1)

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

I. Teraoka, “A hybrid filter of Bragg grating and ring resonator,” Opt. Commun. 339, 108–114 (2015).
[Crossref]

Opt. Express (8)

K. McGarvey-Lechable and P. Bianucci, “Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators,” Opt. Express 22(21), 26032–26041 (2014).
[Crossref] [PubMed]

C. E. Campanella, L. Mastronardi, F. De Leonardis, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of fiber Bragg grating based mode-splitting resonant sensors,” Opt. Express 22(21), 25371–25384 (2014).
[Crossref] [PubMed]

K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express 19(12), 11769–11779 (2011).
[Crossref] [PubMed]

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18(3), 2973–2986 (2010).
[Crossref] [PubMed]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
[Crossref] [PubMed]

C. E. Campanella, A. Giorgini, S. Avino, P. Malara, R. Zullo, G. Gagliardi, and P. De Natale, “Localized strain sensing with fiber Bragg-grating ring cavities,” Opt. Express 21(24), 29435–29441 (2013).
[Crossref] [PubMed]

W. Zhu, T. Shi, Z. Tang, B. Gong, G. Liao, and J. Tully, “Dynamic selective etching: a facile route to parabolic optical fiber nano-probe,” Opt. Express 21(6), 6919–6927 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Opt. Lett. (4)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Figotin and I. Vitebskiy, “Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036619 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Science (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the Ultimate Limit of Fiber-Optic Strain Sensing,” Science 330(6007), 1081–1084 (2010).
[Crossref] [PubMed]

Sensors (Basel) (1)

F. De Leonardis, C. E. Campanella, B. Troia, A. G. Perri, and V. M. N. Passaro, “Performance of SOI Bragg grating ring resonator for nonlinear sensing applications,” Sensors (Basel) 14(9), 16017–16034 (2014).
[Crossref] [PubMed]

Other (7)

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Advanced Applications - Bragg Gratings And And Distributed Sensors (Springer 2000).

F. Vollmer and H. G. L. Schwefel, “Taking detection to the limit with optical microcavities: recent advances presented at the 560. WE Heraeus Seminar,” Europ. Phys. J. Sp. Top. 23(10), 1907–1916 (2014).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope”, International Conference on Transparent Optical Networks (ICTON), DOI: , Coventry (United Kingdom) 2–5 July 2012.
[Crossref]

R. C. Astle and M. J. Weast, Handbook of Chemistry and Physics, 64th. ed. (CRC Press Inc., 1983).

A. B. Matsko, L. Maleki, A. A. Savchenkov, and V. S. Ilchenko, “EIT in resonator chains: similarities and differences with atomic media,” 34th Winter Colloquium on the Physics of Quantum Electronics (PQE) 2004; January 4–8, 2004; Snowbird, UT; United States.

S. N. Chormaic, Y. Wu, and J. M. Ward, “Whispering gallery mode resonators as tools for non-linear optics and optomechanics,” Proc. SPIE, Laser Resonators, Microresonators, and Beam Control XIV, doi: (2012).
[Crossref]

C. E. Campanella, F. De Leonardis, and V. M. N. Passaro, “Performance of Bragg grating ring resonator as high sensitivity refractive index sensor,” IEEE Fotonica AEIT Italian Conference on Photonics Technologies 2014, pp. 1–4, May 12th-14th, 2014, Naples (Italy).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 π-shifted Fiber Bragg Grating Ring Resonator (π-FBGRR) obtained by enclosing on itself a FBG through an additional optical path which introduces an overall phase delay of π between the two counter-propagating waves. The device is excited by an optical coupler 1 and the optical electric field is extracted by a fiber coupler 2. (Inset) Sensitive region (π-region), where the fiber cladding has been removed from the standard SMF. neff(d) is the effective index assumed by the optical mode propagating through the π-region, changing due to an external substance.
Fig. 2
Fig. 2 Spectral responses (T), evaluated with the parameters reported in Table 1, when τ is varied from 0.15 to 0.95 with a step of 0.2 for: (a) RR (|Δn| = 0 in Eq. (2)); (b) FBGRR (Φ = 0 in Eq. (2)); (c) π-FBGRR (|Δn| = 4 × 10−5 in Eq. (2)).
Fig. 3
Fig. 3 Spectral responses (T), evaluated with the parameters reported in Table 1: (a) π-FBG; (b) π-FBGRR, where the dotted curve is obtained for τ = 0.95 (as in Fig. 2). The solid curves are evaluated for τ = 0.975 with |Δn| varying from 1 × 10−5 to 4 × 10−5 with a step of 1 × 10−5.
Fig. 4
Fig. 4 Transmission (T) contour curve evaluated by changing |Δn| from 5 × 10−6 to 4 × 10−5 with a step of 1 × 10−6 in the [1.56047 μm ÷ 1.56054 μm] λ-range, being τ = 0.975.
Fig. 5
Fig. 5 Linewidth curve evaluated by changing τ from 0.175 to 0.999, near λΒ, for typical RR (blue curve), π-FBGRR with |Δn| = 4 × 10-5.(black curve), and π-FBGRR with |Δn| = 2 × 10-4.(red curve in the inset 2).
Fig. 6
Fig. 6 Effective index (neff(d)) near 1.55 μm in the defective region (i.e., π-region in Fig. 1) by considering a cladding index variation as 1 (air), 1.025 (helium), 1.33 (water), 1.38 (alcohol) 1.42 (50% of sugar in water) and 1.4564 (silicon dioxide of the standard fiber cladding).
Fig. 7
Fig. 7 Fano resonance shift (i.e. Δλ = λF,substance - λF,air), as a function of the values assumed from ncl.
Fig. 8
Fig. 8 (a) ncl as function of sugar concentration in water; (b) Fano resonance shift as a function of the values assumed from ncl, due to different concentrations of sugar in water.
Fig. 9
Fig. 9 (a) Sensor sensitivity; (b) Sensor resolution (i.e., minimum detectable ncl).

Tables (1)

Tables Icon

Table 1 Physical parameters and assumed values.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Φ= π 2 λ B λ = 2π n eff(d) λ Λ B 2
T= | E o E in | 2 = | 1 2 [ k 2 a( t 2 e jΦ +r( t 2 ( r 2 +1 ) ) ) ( r 2 +1 )- τ 2 a 2 ( t 2 e jΦ +r( t 2 ( r 2 +1 ) ) ) + k 2 a( t 2 e jΦ r( t 2 ( r 2 +1 ) ) ) ( r 2 +1 )- τ 2 a 2 ( t 2 e jΦ r( t 2 ( r 2 +1 ) ) ) ] | 2
t= Θ Θcosh(Θ)+jΔβsinh(Θ) ;r= jKsinh(Θ) Θcosh(Θ)+jΔβsinh(Θ)
Θ= [ | K | 2 ( Δβ ) 2 ] 1 2 ;K= π| Δn | λ B ;Δβ=2π n eff ( λ B λ λ λ B )
λ * = 2 n eff 2 n eff +| Δn | λ B ; λ ** = 2 n eff 2 n eff | Δn | λ B
n eff( d ) ( n cl )=a e (b n cl ) +c e (d n cl )
Δλ( n cl )=a e (b n cl )
S nc = λ F n cl
n cl min = n eff( d ) λ ( n eff( d ) n cl ) 1 ×FWH M Fano

Metrics