Abstract

The design and characterization of a slow-wave series push-pull traveling wave silicon photonic modulator is presented. At 2 V and 4 V reverse bias, the measured −3 dB electro-optic bandwidth of the modulator with an active length of 4 mm are 38 GHz and 41 GHz, respectively. Open eye diagrams are observed up to bitrates of 60 Gbps without any form of signal processing, and up to 70 Gbps with passive signal processing to compensate for the test equipment. With the use of multi-level amplitude modulation formats and digital-signal-processing, the modulator is shown to operate below a hard-decision forward error-correction threshold of 3.8×10−3 at bitrates up to 112 Gbps over 2 km of single mode optical fiber using PAM-4, and over 5 km of optical fiber with PAM-8. Energy consumed solely by the modulator is also estimated for different modulation cases.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

Alireza Samani, David Patel, Mathieu Chagnon, Eslam El-Fiky, Rui Li, Maxime Jacques, Nicolás Abadía, Venkat Veerasubramanian, and David V. Plant
Opt. Express 25(12) 13252-13262 (2017)

Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications

Eslam El-Fiky, Mohamed Osman, Mohammed Sowailem, Alireza Samani, David Patel, Rui Li, Md. G. Saber, Yun Wang, Nicolas Abadia, Yannick D’Mello, and David V. Plant
Opt. Express 25(24) 30336-30348 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
    [Crossref]
  3. R. Walker, “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
    [Crossref]
  4. R. Spickermann, S. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in “Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE,” , vol. 2 (1996), vol. 2, pp. 97–98 vol.2.
    [Crossref]
  5. N. Jaeger and Z. Lee, “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE J. Quantum Electron. 28, 1778–1784 (1992).
    [Crossref]
  6. J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
    [Crossref]
  7. S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
    [Crossref]
  8. Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” J. Lightw. Technol. 24, 544–554 (2006).
    [Crossref]
  9. G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
    [Crossref]
  10. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [Crossref] [PubMed]
  11. L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
    [Crossref]
  12. M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).
  13. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
    [Crossref] [PubMed]
  14. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
    [Crossref]
  15. F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21, 19593–19607 (2013).
    [Crossref] [PubMed]
  16. C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.
  17. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18, 16902–16928 (2010).
    [Crossref] [PubMed]
  18. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
    [Crossref] [PubMed]
  19. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightw. Technol. 30, 1602–1609 (2012).
    [Crossref]
  20. R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]
  21. X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
    [Crossref]
  22. Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
    [Crossref]
  23. H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39, 4839–4842 (2014).
    [Crossref] [PubMed]
  24. D. Frickey, “Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Techn. 42, 205–211 (1994).
    [Crossref]
  25. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2015).
    [Crossref]
  26. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.
  27. M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.
  28. D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
    [Crossref] [PubMed]
  29. S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
    [Crossref]
  30. W. A. Ling, I. Lyubomirsky, and O. Solgaard, “Digital quadrature amplitude modulation with optimized non-rectangular constellations for 100 Gb/s transmission by a directly-modulated laser,” Opt. Express 22, 10844–10857 (2014).
    [Crossref] [PubMed]
  31. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
    [Crossref] [PubMed]
  32. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
    [Crossref]
  33. IEEE P802.3bs 400 GbE Task Force. http://www.ieee802.org/3/bs .
  34. P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
    [Crossref]
  35. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
    [Crossref]
  36. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
    [Crossref] [PubMed]
  37. H. T. Chen, “Development of an 80-Gbit/s InP-based Mach-Zehnder modulator,” Ph. D. Dissertation, Dept. Elect. Eng. Comput. Sci., Technical Univ., Berlin, Germany (2007).

2015 (1)

2014 (8)

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

H. Xu, X. Li, X. Xiao, P. Zhou, Z. Li, J. Yu, and Y. Yu, “High-speed silicon modulator with band equalization,” Opt. Lett. 39, 4839–4842 (2014).
[Crossref] [PubMed]

D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
[Crossref] [PubMed]

W. A. Ling, I. Lyubomirsky, and O. Solgaard, “Digital quadrature amplitude modulation with optimized non-rectangular constellations for 100 Gb/s transmission by a directly-modulated laser,” Opt. Express 22, 10844–10857 (2014).
[Crossref] [PubMed]

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

2013 (4)

2012 (7)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
[Crossref] [PubMed]

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightw. Technol. 30, 1602–1609 (2012).
[Crossref]

2011 (1)

J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
[Crossref]

2010 (1)

2009 (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (1)

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

2006 (1)

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” J. Lightw. Technol. 24, 544–554 (2006).
[Crossref]

2004 (1)

G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
[Crossref]

1994 (1)

D. Frickey, “Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Techn. 42, 205–211 (1994).
[Crossref]

1992 (1)

N. Jaeger and Z. Lee, “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE J. Quantum Electron. 28, 1778–1784 (1992).
[Crossref]

1991 (1)

R. Walker, “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

Akagawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Akiyama, S.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

Ayazi, A.

Azadeh, S. S.

Baba, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Baehr-Jones, T.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18, 16902–16928 (2010).
[Crossref] [PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Bergman, K.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Berini, P.

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” J. Lightw. Technol. 24, 544–554 (2006).
[Crossref]

Bogaerts, W.

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightw. Technol. 30, 1602–1609 (2012).
[Crossref]

Buhl, L.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

Capellini, G.

Caverley, M.

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

Chagnon, M.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

Chee, E. K. S.

Chen, H.

Chen, H. T.

H. T. Chen, “Development of an 80-Gbit/s InP-based Mach-Zehnder modulator,” Ph. D. Dissertation, Dept. Elect. Eng. Comput. Sci., Technical Univ., Berlin, Germany (2007).

Chen, L.

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

Chen, R.

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Chen, R. T.

Chen, Y.-K.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2015).
[Crossref]

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

Cretu, E.

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

Cui, Y.

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” J. Lightw. Technol. 24, 544–554 (2006).
[Crossref]

Cyr, M.

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Dagli, N.

J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
[Crossref]

R. Spickermann, S. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in “Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE,” , vol. 2 (1996), vol. 2, pp. 97–98 vol.2.
[Crossref]

DeRose, C.

C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.

Ding, J.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

Fang, Q.

Frickey, D.

D. Frickey, “Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Techn. 42, 205–211 (1994).
[Crossref]

Gagne, J.-F.

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Gagné, J.-F.

Ghosh, S.

Gould, M.

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Guillen-Torres, M. A.

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

Harris, N. C.

Hauck, J.

Hirayama, N.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Hirose, S.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Hochberg, M.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18, 16902–16928 (2010).
[Crossref] [PubMed]

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2015).
[Crossref]

Horikawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Hosseini, A.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Imai, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Itoh, H.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Jaeger, N.

N. Jaeger and Z. Lee, “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE J. Quantum Electron. 28, 1778–1784 (1992).
[Crossref]

Jaeger, N. A.

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

Ji, R.

Koshino, K.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Kuramata, A.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Kwong, D.

Latrasse, C.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Lee, B.

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Lee, P.

Lee, Z.

N. Jaeger and Z. Lee, “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE J. Quantum Electron. 28, 1778–1784 (1992).
[Crossref]

Lessard, S.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Li, G.

G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
[Crossref]

Li, Q.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Li, X.

Li, Z.

Lim, A. E.-J.

Ling, W. A.

Liow, T.-Y.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

Liu, Y.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Lo, G.-Q.

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

Lo, P. G.-Q.

Lu, Y.

Lyubomirsky, I.

Ma, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Mason, T.

G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
[Crossref]

Merget, F.

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Min, R.

Mueller, J.

Nezhad, M. P.

Noguchi, Y.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Novack, A.

Osman, M.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Painchaud, Y.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Paquet, C.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Patel, D.

Pinguet, T.

Plant, D.

Plant, D. V.

D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Poulin, M.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

Rusli, R.

Sakamoto, S.

J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
[Crossref]

R. Spickermann, S. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in “Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE,” , vol. 2 (1996), vol. 2, pp. 97–98 vol.2.
[Crossref]

Samani, A.

Seki, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Sekiguchi, S.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Shen, B.

Shin, J.

J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
[Crossref]

Solgaard, O.

Spickermann, R.

R. Spickermann, S. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in “Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE,” , vol. 2 (1996), vol. 2, pp. 97–98 vol.2.
[Crossref]

Streshinsky, M.

Subbaraman, H.

Takeuchi, T.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Teo, S. H.-G.

Tian, Y.

Toyama, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Trotter, D.

C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.

Tu, X.

Usuki, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

Veerasubramanian, V.

Vlasov, Y.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

Walker, R.

R. Walker, “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

Wang, A.

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Watts, M.

C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.

Witzens, J.

Xiao, X.

Xu, H.

Xu, X.

Xuan, Z.

Yamamoto, T.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Yang, L.

Yang, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

Yu, H.

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightw. Technol. 30, 1602–1609 (2012).
[Crossref]

Yu, J.

Yu, M.

Yu, P.

G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
[Crossref]

Yu, Y.

yun Lin, C.

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Zhang, L.

Zhang, X.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Zhang, Y.

Zhong, Q.

Zhou, P.

Zhu, W.

Zortman, W.

C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.

IEEE Commun. Mag. (1)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

N. Jaeger and Z. Lee, “Slow-wave electrode for use in compound semiconductor electrooptic modulators,” IEEE J. Quantum Electron. 28, 1778–1784 (1992).
[Crossref]

R. Walker, “High-speed III–V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27, 654–667 (1991).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact PIN-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Topics Quantum Electron. 19, 74–84 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

D. Frickey, “Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Trans. Microw. Theory Techn. 42, 205–211 (1994).
[Crossref]

J. Lightw. Technol. (6)

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-speed silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightw. Technol. 32, 2240–2247 (2014).
[Crossref]

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightw. Technol. 30, 1602–1609 (2012).
[Crossref]

J. Shin, S. Sakamoto, and N. Dagli, “Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices,” J. Lightw. Technol. 29, 48–52 (2011).
[Crossref]

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes,” J. Lightw. Technol. 26, 608–615 (2008).
[Crossref]

Y. Cui and P. Berini, “Modeling and design of GaAs traveling-wave electrooptic modulators based on capacitively loaded coplanar strips,” J. Lightw. Technol. 24, 544–554 (2006).
[Crossref]

G. Li, T. Mason, and P. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightw. Technol. 22, 1789–1796 (2004).
[Crossref]

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (12)

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22, 21018–21036 (2014).
[Crossref] [PubMed]

D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
[Crossref] [PubMed]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18, 16902–16928 (2010).
[Crossref] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref] [PubMed]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21, 19593–19607 (2013).
[Crossref] [PubMed]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21, 28387–28393 (2013).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21, 30350–30357 (2013).
[Crossref]

W. A. Ling, I. Lyubomirsky, and O. Solgaard, “Digital quadrature amplitude modulation with optimized non-rectangular constellations for 100 Gb/s transmission by a directly-modulated laser,” Opt. Express 22, 10844–10857 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Photonics Journal, IEEE (1)

X. Zhang, B. Lee, C. yun Lin, A. Wang, A. Hosseini, and R. Chen, “Highly linear broadband optical modulator based on electro-optic polymer,” Photonics Journal, IEEE 4, 2214–2228 (2012).
[Crossref]

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Selected Topics in Quantum Electronics, IEEE Journal of (1)

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” Selected Topics in Quantum Electronics, IEEE Journal of 20, 150–157 (2014).
[Crossref]

Other (8)

M. Poulin, C. Latrasse, J.-F. Gagne, Y. Painchaud, M. Cyr, C. Paquet, M. Osman, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” in , “European Conference on Optical Communications (ECOC), Paper Mo.4.5.3” (2014).

R. Spickermann, S. Sakamoto, and N. Dagli, “In traveling wave modulators which velocity to match?” in “Lasers and Electro-Optics Society Annual Meeting, 1996. LEOS 96., IEEE,” , vol. 2 (1996), vol. 2, pp. 97–98 vol.2.
[Crossref]

C. DeRose, D. Trotter, W. Zortman, and M. Watts, “High speed travelling wave carrier depletion silicon Mach-Zehnder modulator,” in “Optical Interconnects Conference, 2012 IEEE,” (2012), pp. 135–136.

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University, 2015).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, and et al., “A 30 GHz silicon photonic platform,” in “SPIE Optics+ Optoelectronics,” (International Society for Optics and Photonics, 2013), pp. 878107.

M. A. Guillen-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in “Photonics Conference (IPC), 2014 IEEE,” (2014), pp. 336–337.

IEEE P802.3bs 400 GbE Task Force. http://www.ieee802.org/3/bs .

H. T. Chen, “Development of an 80-Gbit/s InP-based Mach-Zehnder modulator,” Ph. D. Dissertation, Dept. Elect. Eng. Comput. Sci., Technical Univ., Berlin, Germany (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1:
Fig. 1: Layout schematic of the SPP TWMZM and a magnified view of the ‘T’-shaped extensions (schematic not to scale). The dimensions are: W = 120 μm, S = 51 μm, t = 2 μm, ST = 12.6 μm, GT = 9.2 μm, WT = 10 μm, LT = 47 μm, and PT = 50 μm.
Fig. 2:
Fig. 2: Cross-section schematic of the SPP TWMZM design on an SOI wafer (drawing not to scale).
Fig. 3:
Fig. 3: Finite element method (FEM) simulations of unloaded symmetric CPS transmission lines at 30 GHz for different top-metal trace widths and spacing for (a) microwave attenuation, (b) effective phase index, and (c) characteristic impedance.
Fig. 4:
Fig. 4: Three simulation cases used to represent the effect of ‘T’-shaped extensions on SOI CPS transmission lines. Case (a) represents a CPS transmission line without the ‘T’-shaped extensions such that W = 120 μm and S = 51 μm, case (b) is the slow-wave transmission line with dimensions indicated in Fig. 1, and case (c) is a wider CPS transmission line and a smaller spacing such that W = 139.2 μm and S = 12.6 μm.
Fig. 5:
Fig. 5: Simulated (a) microwave attenuation, (b) microwave index, and (c) characteristic impedance of CPS transmission lines shown in Fig. 4.
Fig. 6:
Fig. 6: Telegrapher’s model of (a) an unloaded transmission line, and (b) of a transmission line loaded with a p-n junction. In this model, Rtl is resistance of the transmission line, Ltl is the inductance, Ctl is the capacitance, and Gtl is the leakage conductance between the two electrodes. All values are per unit length, and Δz represents a length of the transmission line that is much smaller than the effective wavelength λeff of the propagating wave (Δzλeff). In (b) Rtpn and Ctpn, outlined in green, are the parallel equivalent of the series p-n junction resistance and capacitance.
Fig. 7:
Fig. 7: Simulated per unit length (a) resistance (b) inductance (c) conductance, and (d) capacitance of CPS transmission lines.
Fig. 8:
Fig. 8: (a) FEM simulations of microwave loss for cases of a transmission line without a p-n junction, a single p-n junction, and two p-n junction in series (for SPP). (b) Volume density loss for a TWMZM with a silicon p-n junction (logarithmic scale).
Fig. 9:
Fig. 9: Comparison of measured and simulated (a) EE S21 response with Rpn and Cpn as fitting parameters (dashed lines mark −3 dB and −6.4 dB), and (b) EO S21 response using the electrical simulation of (a) (dashed line marks −3 dB). Simulated characteristic impedance is shown in (c).
Fig. 10:
Fig. 10: Measured transmission spectra for (a) diode 1, (b) diode 2, and (c) both diodes under the same reverse bias voltage.
Fig. 11:
Fig. 11: Phase shift calculated from transmission spectrum for (a) diode 1 and diode 2, and (b) both diodes under the same reverse bias voltage.
Fig. 12:
Fig. 12: Extracted p-n junction (a) resistivity, (b) capacitance, and (c) the associated intrinsic bandwidth for different reverse bias voltages.
Fig. 13:
Fig. 13: Measurements of an on-chip termination designed to 50 Ω. In (a), the DC I–V measurement saturation effect is observed, and the calculated DC resistance is shown in (b). The small signal measurements at different DC voltages are shown in (c).
Fig. 14:
Fig. 14: S-parameter measurements: (a) EE S11, (b) EE S21 normalized to 1.5 GHz (dashed lines mark −3 dB and −6.4 dB), and (c) EO S21 normalized to 1.5 GHz (dashed line marks −3 dB).
Fig. 15:
Fig. 15: S-parameter measurements with and without the on-chip termination: (a) EE S11, and (b) EO S21 normalized to 1.5 GHz (solid line indicates −3 dB).
Fig. 16:
Fig. 16: Extracted (a) attenuation (quadratic fit shown by dashed line), (b) microwave phase index, and (c) characteristic impedance from measured RF S-parameters.
Fig. 17:
Fig. 17: Optical eye-diagrams with ER (in dB) and Q-factor (in linear units) measured with the DCA at (a) 40 Gbps, (b) 56 Gbps, and (c) 60 Gbps.
Fig. 18:
Fig. 18: Effect of drive and bias voltages for extinction ratio and receiver sensitivity. (a) Extinction ratio for different drive and bias voltages. (b) BER measurement for received power at different bias voltages at a drive voltage of 4.8 Vpp at 40 Gbps (NC: floating bias voltage). (c) Modulator energy consumption for error-free operation at 40 Gbps and the required optical power at receiver (modulator biased at 4 V).
Fig. 19:
Fig. 19: (a) Two-tap passive FFE and (b) Calculated response of the two-tap FFE.
Fig. 20:
Fig. 20: Optical eye-diagrams with ER (in dB) and Q-factor (in linear units) measured with the DCA and with analog pre-emphasis at (a) 60 Gbps, (b) 70 Gbps, and (c) 72 Gbps.
Fig. 21:
Fig. 21: DSP communication link.
Fig. 22:
Fig. 22: Transmitter and receiver offline DSP.
Fig. 23:
Fig. 23: Frequency spectrum of (a) root-raised cosine pulse shaped data at the transmitter, and (b) the pre-emphasis filters applied at the transmitter for OOK, PAM-4, and PAM-8 modulation formats.
Fig. 24:
Fig. 24: PAM-2 modulation results with DSP. Shown in (a) is the eye diagram, (b) BER for different bias voltages, and (c) BER for different transmission distances at 2 V reverse bias.
Fig. 25:
Fig. 25: PAM-4 modulation results with DSP. Shown in (a) is the eye diagram, (b) BER for different bias voltages, and (c) BER for different transmission distances at 2 V reverse bias.
Fig. 26:
Fig. 26: PAM-8 modulation results with DSP. Shown in (a) is the eye diagram, (b) BER for different transmission distances at 1 V reverse bias, and (c) the sensitivity of the receiver for the different modulation formats after 2 km of propagation.

Tables (1)

Tables Icon

Table 1: Estimated power consumed by the SPP TWMZM for different modulation configurations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Z 0 ul = R tl + j ω L tl G tl + j ω C tl loseless = L tl C tl
γ ul = α ul + j β ul = ( R tl + j ω L tl ) ( G tl + j ω C tl ) loseless = j ω L tl C tl β ul
n μ , ul = c 0 v μ , ul = c 0 L tl C tl = c 0 C tl Z 0 ul = c 0 L tl Z 0 ul
γ ul = 1 2 ( R tl Z 0 ul conductor loss + G tl Z 0 ul dielectric loss ) α ul [ N p / m ] + j ω L tl C tl β ul [ rad / m ]
Z 0 l = R tl + j ω L tl ( G tl + R tpn 1 ) + j ω ( C tl + C tpn )
γ l = α l + j β l = ( R tl + j ω L tl ) ( [ G tl + R tpn 1 ] + j ω [ C tl + C tpn ] )
Z 0 l = L tl C tl + C tpn
γ l = 1 2 ( R tl Z 0 l conductor loss + ( G tl + R tpn 1 ) Z 0 l dielectric loss ) α l [ N p / m ] + j ω L tl ( C tl + C tpn ) β l [ rad / m ]
n μ , l = c 0 L tl ( C tl + C tpn )
α cl = 1 2 ( R DC + R AC f ) C tl + C pn L tl
α Sil = 1 2 ( 4 π 2 f 2 C pn 2 R pn ) L tl C tl + C pn
Z 0 ul = n og Z 0 l n μ , ul
C pn , d = n og 2 n μ , ul 2 c 0 Z 0 l n og

Metrics