Abstract

We report intense (~10 mW), ultra-broadband (~150 THz wide), terahertz-to-infrared, Gaussian-wavefront emission from nanopore-structured metallic thin films under femtosecond laser pulse irradiation. The proposed underlying mechanism is thermal radiation. The nanostructures of the metal film are produced by random holes in the substrate. Under pulse-train femtosecond laser irradiation, we found dramatically enhanced optical absorption, with an absorptivity that was equal to as much as 95% of the metallic surface nanostructure, due to both an antireflection mechanism and dissipation of excited surface plasmon polaritons into the metal surface.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures

Liangliang Zhang, Ji Zhao, Tong Wu, Cunlin Zhang, and X.-C. Zhang
Opt. Express 23(13) 17185-17190 (2015)

Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation

Liangliang Zhang, Tong Wu, Ji Zhao, Cunlin Zhang, and X.-C. Zhang
Opt. Express 23(19) 25202-25208 (2015)

All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth

Lei Zhao, Han Liu, Zhihong He, and Shikui Dong
Appl. Opt. 57(8) 1757-1764 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  4. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008).
    [PubMed]
  5. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  7. G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
    [Crossref] [PubMed]
  8. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
    [Crossref] [PubMed]
  9. G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
    [Crossref] [PubMed]
  10. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
    [Crossref] [PubMed]
  11. D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
    [Crossref] [PubMed]
  12. L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
    [Crossref] [PubMed]
  13. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  14. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  15. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  16. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
    [Crossref] [PubMed]
  17. Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
    [Crossref] [PubMed]
  18. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  19. Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
    [Crossref]
  20. M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
    [Crossref]
  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  22. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  23. I. H. H. Zabel and D. Stroud, “Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates,” Phys. Rev. B Condens. Matter 46(13), 8132–8138 (1992).
    [Crossref] [PubMed]
  24. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [Crossref]
  25. A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. In Mech. Eng. 1–4 (2010).
  26. A. Y. Vorobyev and C. Guo, “Thermal response and optical absorptance of metals under femtosecond laser irradiation,” Natural Sci. 3(06), 488–495 (2011).
    [Crossref]
  27. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  28. M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
    [Crossref] [PubMed]
  29. H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
    [Crossref]
  30. J. Ready, Effects of High-Power Laser Radiation (Academic, 1971).

2014 (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

2013 (1)

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

2012 (1)

2011 (3)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Thermal response and optical absorptance of metals under femtosecond laser irradiation,” Natural Sci. 3(06), 488–495 (2011).
[Crossref]

2010 (5)

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (2)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2006 (1)

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
[Crossref]

2005 (3)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1995 (1)

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

1992 (1)

I. H. H. Zabel and D. Stroud, “Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates,” Phys. Rev. B Condens. Matter 46(13), 8132–8138 (1992).
[Crossref] [PubMed]

Adelung, R.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Avasthi, D. K.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Avouris, P.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Barnes, W. L.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Blackshire, J. L.

Bohn, M. J.

Brener, I.

Cao, J.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Chakravadhanula, V. S. K.

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Chiu, H. Y.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Elbahri, M.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Elsayed-Ali, H. E.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Faupel, F.

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Freitag, M.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Gao, Y.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

García de Abajo, F. J.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gu, J.

Guo, C.

A. Y. Vorobyev and C. Guo, “Thermal response and optical absorptance of metals under femtosecond laser irradiation,” Natural Sci. 3(06), 488–495 (2011).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Han, J.

Hendry, E.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Hochrein, T.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, R.

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Jansen, C.

Jördens, C.

Kajikawa, K.

Karpowicz, N.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
[Crossref]

Koch, M.

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Krumbholz, N.

Kumar, G.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Kumar, N.

Kuttge, M.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lalla, N. P.

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Li, Z.

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Ma, Y.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Mantell, D. A.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Miller, R. J. D.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Mishra, Y. K.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Mohapatra, S.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Niesler, F. B.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

O’Hara, J. F.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Perebeinos, V.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Peters, O.

Planken, P. C. M.

Plum, E.

Polman, A.

Polyushkin, D. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Ramakrishnan, G.

Salhi, M.

Scheller, M.

Schmuttenmaer, C. A.

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Singh, R.

Singhal, R.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Smirnova, E.

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Steiner, M.

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Stoik, C. D.

Stone, E. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Stroud, D.

I. H. H. Zabel and D. Stroud, “Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates,” Phys. Rev. B Condens. Matter 46(13), 8132–8138 (1992).
[Crossref] [PubMed]

Tanaka, D.

Taylor, A. J.

Tian, Z.

Tripathi, A.

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Vieweg, N.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Thermal response and optical absorptance of metals under femtosecond laser irradiation,” Natural Sci. 3(06), 488–495 (2011).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Welsh, G. H.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Wietzke, S.

Wynne, K.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Zabel, I. H. H.

I. H. H. Zabel and D. Stroud, “Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates,” Phys. Rev. B Condens. Matter 46(13), 8132–8138 (1992).
[Crossref] [PubMed]

Zaporojtchenko, V.

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Zhang, W.

Zhang, X.-C.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zheludev, N. I.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhong, H.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103 (2006).
[Crossref]

J. Chem. Phys. (1)

M. Aeschlimann, C. A. Schmuttenmaer, H. E. Elsayed-Ali, R. J. D. Miller, J. Cao, Y. Gao, and D. A. Mantell, “Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit,” J. Chem. Phys. 102(21), 8606–8613 (1995).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. K. Mishra, S. Mohapatra, V. S. K. Chakravadhanula, N. P. Lalla, V. Zaporojtchenko, D. K. Avasthi, and F. Faupel, “Synthesis and Characterization of Ag-Polymer Nanocomposites,” J. Nanosci. Nanotechnol. 10(4), 2833–2837 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Freitag, H. Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5(7), 497–501 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Natural Sci. (1)

A. Y. Vorobyev and C. Guo, “Thermal response and optical absorptance of metals under femtosecond laser irradiation,” Natural Sci. 3(06), 488–495 (2011).
[Crossref]

Opt. Express (7)

Phys. Rev. B (1)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

I. H. H. Zabel and D. Stroud, “Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates,” Phys. Rev. B Condens. Matter 46(13), 8132–8138 (1992).
[Crossref] [PubMed]

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Plasmonics (1)

Y. K. Mishra, R. Adelung, G. Kumar, M. Elbahri, S. Mohapatra, R. Singhal, A. Tripathi, and D. K. Avasthi, “Formation of self-organized silver nanocup-type structures and their plasmonic absorption,” Plasmonics 8(2), 811–815 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. Y. Vorobyev and C. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. In Mech. Eng. 1–4 (2010).

J. Ready, Effects of High-Power Laser Radiation (Academic, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM images of the surface morphology that show structural features of the sample. Top: large-scale view. Bottom: magnified view of the central area. (b) Schematic diagram of the Fourier-transform Michelson interferometer.
Fig. 2
Fig. 2 (a) Measured (top) and simulated (bottom) radiation frequency spectra under pump powers of 2.3 W (blue), 1.5 W (red) and 0.05 W (green). (b) Gaussian-shaped surface temperature distribution of the metallic film for pump powers of 2.3 W (blue), 1.5 W (red) and 0.05 W (green). The right panel shows the temperature distribution of the cross section (dashed white line).
Fig. 3
Fig. 3 Top: Absorptivity of the laser versus the incidence angle for the flat metal (dots) and nanostructured surfaces (squares). The blue data points represent the results for the p-polarized laser. The red data points are for the s-polarized laser. Bottom: Measured THz-to-IR absolute power emitted from the nanostructured metal film versus the incidence angle. The lines are provided to guide the eye.
Fig. 4
Fig. 4 Angular distribution of the THz-to-IR thermal radiation. The blue data points correspond to an incidence angle of 30°. The red data points are for an incidence angle of 0°.
Fig. 5
Fig. 5 Gaussian shaped spatial distribution of the THz-to-IR thermal radiation. Red indicates high intensity, and blue denotes low intensity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(ν,T)=ε 2h ν 3 c 2 1 e hν kT 1

Metrics