Abstract

The implementation of power efficient and high throughput chip-to-chip interconnects is necessary to keep pace with the bandwidth demands in high-performance computing platforms. In recent years, considerable effort has been made to optimize inter-chip communications using traditional copper waveguides. Also, optical links are extensively investigated as an alternative technology for fast and efficient data routing. For the first time, we experimentally demonstrate simultaneous microwave and optical high-speed data transmission over metallic waveguides embedded in polymer. The demonstration is significant as it merges two layers of communications onto the same structure towards increased aggregated bandwidth, and energy-efficient data movement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CMOS plasmonics in WDM data transmission: 200 Gb/s (8 × 25Gb/s) transmission over aluminum plasmonic waveguides

G. Dabos, A. Manolis, S. Papaioannou, D. Tsiokos, L. Markey, J.-C. Weeber, A. Dereux, A. L. Giesecke, C. Porschatis, B. Chmielak, and N. Pleros
Opt. Express 26(10) 12469-12478 (2018)

Polymer waveguides for electro-optical integration in data centers and high-performance computers

Roger Dangel, Jens Hofrichter, Folkert Horst, Daniel Jubin, Antonio La Porta, Norbert Meier, Ibrahim Murat Soganci, Jonas Weiss, and Bert Jan Offrein
Opt. Express 23(4) 4736-4750 (2015)

Demonstration of terabit-scale data transmission in silicon vertical slot waveguides

Chengcheng Gui, Chao Li, Qi Yang, and Jian Wang
Opt. Express 23(8) 9736-9745 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol. Comput. Syst. 7(2), 6 (2011).
    [Crossref]
  2. F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
    [Crossref]
  3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  4. S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM 54(5), 67–77 (2011).
    [Crossref]
  5. International Roadmap of Semiconductors (ITRS), ITRS 2012 Edition, 2012 Overall Roadmap Technology Characteristics (ORTC) Tables, Performance and Packaged Chips Trends, http://www.itrs.net .
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
    [Crossref] [PubMed]
  7. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [Crossref]
  8. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  10. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  11. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  12. Y. Takagi, A. Suzuki, T. Horio, T. Ohno, T. Kojima, T. Takada, S. Iio, K. Obayashi, and M. Okuyama, “Low-loss chip-to-chip optical interconnection using multichip optoelectronic package with 40-Gb/s optical I/O for computer applications,” J. Lightwave Technol. 28(20), 2956–2963 (2010).
    [Crossref]
  13. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [Crossref] [PubMed]
  14. M. L. Brongersma and V. M. Shalaev, “Applied Physics: The Case For Plasmonics,” Science 328, 440–441 (2010).
    [Crossref] [PubMed]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  16. J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).
  18. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  19. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [Crossref]
  20. T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).
  21. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  22. O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
    [Crossref]
  23. L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
    [Crossref]
  24. Y. H. Joo, S. H. Song, and R. Magnusson, “Long-range surface plasmon-polariton waveguide sensors with a Bragg grating in the asymmetric double-electrode structure,” Opt. Express 17(13), 10606–10611 (2009).
    [Crossref] [PubMed]
  25. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
    [Crossref]
  26. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2012).
    [Crossref]
  27. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [Crossref]
  28. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  29. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
    [Crossref] [PubMed]
  30. L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30(1), 163–168 (2012).
    [Crossref]
  31. J. T. Kim and S. Park, “Vertical polarization beam splitter using a hybrid long-range surface plasmon polariton waveguide,” J. Opt. 16(2), 025501 (2014).
    [Crossref]
  32. J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
    [Crossref]
  33. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
    [Crossref]
  34. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [Crossref]
  35. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
    [Crossref] [PubMed]
  36. B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
    [Crossref]
  37. J. T. Kim and S. Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
    [Crossref] [PubMed]
  38. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [Crossref] [PubMed]
  39. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
    [Crossref]
  40. M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
    [Crossref]
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  42. Asahi Glass Company, Technical Information Cytop, distributed by Bellex International Corporation, http://www.bellexinternational.com .
  43. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [Crossref]
  44. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
    [Crossref]
  45. J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)
  46. T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
    [Crossref]
  47. M.A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]

2014 (5)

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

J. T. Kim and S. Park, “Vertical polarization beam splitter using a hybrid long-range surface plasmon polariton waveguide,” J. Opt. 16(2), 025501 (2014).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

2013 (3)

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
[Crossref]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

2012 (6)

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2012).
[Crossref]

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30(1), 163–168 (2012).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

M.A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[Crossref]

2011 (4)

S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM 54(5), 67–77 (2011).
[Crossref]

R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol. Comput. Syst. 7(2), 6 (2011).
[Crossref]

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

J. T. Kim and S. Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[Crossref] [PubMed]

2010 (6)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Y. Takagi, A. Suzuki, T. Horio, T. Ohno, T. Kojima, T. Takada, S. Iio, K. Obayashi, and M. Okuyama, “Low-loss chip-to-chip optical interconnection using multichip optoelectronic package with 40-Gb/s optical I/O for computer applications,” J. Lightwave Technol. 28(20), 2956–2963 (2010).
[Crossref]

M. L. Brongersma and V. M. Shalaev, “Applied Physics: The Case For Plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

2009 (4)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Y. H. Joo, S. H. Song, and R. Magnusson, “Long-range surface plasmon-polariton waveguide sensors with a Bragg grating in the asymmetric double-electrode structure,” Opt. Express 17(13), 10606–10611 (2009).
[Crossref] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

2008 (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

2007 (2)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (3)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ainspan, H. A.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Akbari, A.

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Alon, E.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Amberg, P.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Andry, P. S.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Apostolopoulos, D.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Avramopoulos, H.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Babicheva, V. E.

Banan, B.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Baus, M.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Beakes, M. P.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Beausoleil, R. G.

R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol. Comput. Syst. 7(2), 6 (2011).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Belkin, M. A.

J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
[Crossref]

Berini, P.

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref]

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2012).
[Crossref]

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[Crossref] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Boltasseva, A.

Borges, B. H. V.

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Borkar, S.

S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM 54(5), 67–77 (2011).
[Crossref]

Bozhevolnyi, S.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Breukelaar, I.

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied Physics: The Case For Plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Bulzacchelli, J. F.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Charbonneau, R.

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
[Crossref]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Chen, L.

Chen, S.

Chen, X.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Chien, A. A.

S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM 54(5), 67–77 (2011).
[Crossref]

Choe, J. S.

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Choi, S. Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cunningham, J. E.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Dally, W. J.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Dang, B.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Dayringer, M.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2012).
[Crossref]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Dereux, A.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dickson, T. O.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Diniz, L. O.

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eyles, J. G.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Fafard, S.

Ferrera, M.

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Friedman, D. J.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Gagnon, G.

Gainsley, J.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Gao, D.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Giannoulis, G.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Gray, C. T.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Greer, T. H.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Gu, X.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Hai, M. S.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Hassan, K.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Ho, R.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Horio, T.

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Iga, K.

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Iio, S.

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joo, Y. H.

Ju, J. J.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Kalavrouziotis, D.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Karl, M.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Kim, J. T.

J. T. Kim and S. Park, “Vertical polarization beam splitter using a hybrid long-range surface plasmon polariton waveguide,” J. Opt. 16(2), 025501 (2014).
[Crossref]

J. T. Kim and S. Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[Crossref] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Kim, M. S.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kinsey, N.

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Knickerbocker, J. U.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Kohl, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Kojima, T.

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Kriezis, E. E.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Krishnamoorthy, A. V.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Krupin, O.

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref]

Kumar, A.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Lahoud, N.

Lee, J.

J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
[Crossref]

Lee, J. M.

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Lee, M. H.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Leuthold, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Lexau, J.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, R. Z.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Li, W.

Li, X.

Liboiron-Ladouceur, O.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Lisicka-Skrzek, E.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Liu, F. Y.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, Y.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Magnusson, R.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).

Marega, E.

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

Markey, L.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mattiussi, G.

Mattiussi, G. A.

Melikyan, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Miladi, H.

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Moghadam, H. F.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Mohajerzadeh, S.

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Naik, G. V.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Nunes, F. D.

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

Obayashi, K.

Ohno, T.

Okuyama, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Papaioannou, S.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Park, S.

J. T. Kim and S. Park, “Vertical polarization beam splitter using a hybrid long-range surface plasmon polariton waveguide,” J. Opt. 16(2), 025501 (2014).
[Crossref]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Park, S. K.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[Crossref] [PubMed]

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

Parker, B. D.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Patil, D.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pitilakis, A. K.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Pleros, N.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Poulton, J. W.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Qian, G.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Ramazani, M.

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rylov, S. V.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Scales, C.

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Shahabadi, M.

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

Shalaev, V. M.

Shan, F.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Song, S. H.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Suzuki, A.

Tait, R. N.

Takada, T.

Takagi, Y.

Tasolamprou, A. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

Taubenblatt, M.A.

Tekin, T.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Tell, S. G.

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Tsang, C. K.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Tsilipakos, O.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Turlapati, L.

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Vyrsokinos, K.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Wang, C.

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref]

Wang, G.

Wang, Y. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Weeber, J. C.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

Wu, J. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Xiao, L.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Xue, X. J.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Zhang, Lidong

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, X. Y.

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Zheng, X.

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

ACM J. Emerg. Technol. Comput. Syst. (1)

R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol. Comput. Syst. 7(2), 6 (2011).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. Lett. (1)

J. Lee and M. A. Belkin, “Widely tunable thermo-optic plasmonic bandpass filter,” Appl. Phys. Lett. 103(18), 181115 (2013).
[Crossref]

Biosens. Bioelectron. (1)

O. Krupin, C. Wang, and P. Berini, “Selective capture of human red blood cells based on blood group using long-range surface plasmon waveguides,” Biosens. Bioelectron. 53, 117–122 (2014).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Commun. ACM (1)

S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM 54(5), 67–77 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

IEEE J. Solid-St. Circ. (2)

F. Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, “10-Gbps, 5.3-mW optical transmitter and receiver circuits in 40-nm CMOS,” IEEE J. Solid-St. Circ. 47(9), 2049–2067 (2012).
[Crossref]

T. O. Dickson, Y. Liu, S. V. Rylov, B. Dang, C. K. Tsang, P. S. Andry, J. F. Bulzacchelli, H. A. Ainspan, X. Gu, L. Turlapati, M. P. Beakes, B. D. Parker, J. U. Knickerbocker, and D. J. Friedman, “An 8x 10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE J. Solid-St. Circ. 47(4), 884–896 (2012).
[Crossref]

IEEE Photon. J. (1)

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel Transmission Through a Gold Strip Plasmonic Waveguide Embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J. C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett. 24(5), 374–376 (2012).
[Crossref]

IEEE Trans. Electron Dev. (1)

M. Ramazani, H. Miladi, M. Shahabadi, and S. Mohajerzadeh, “Loss measurement of aluminum thin-film coplanar waveguide (CPW) lines at microwave frequencies,” IEEE Trans. Electron Dev. 57(8), 2037–2040 (2010).
[Crossref]

J. Appl. Phys. (1)

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. (2)

J. T. Kim and S. Park, “Vertical polarization beam splitter using a hybrid long-range surface plasmon polariton waveguide,” J. Opt. 16(2), 025501 (2014).
[Crossref]

L. O. Diniz, E. Marega, F. D. Nunes, and B. H. V. Borges, “A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications,” J. Opt. 13(11), 115001 (2011).
[Crossref]

Nat. Photonics (7)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2012).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metalinsulatormetal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Photon. Nanostruct.: Fundam. Appl. (1)

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquidcrystal tunable waveguides for integrated plasmonic components,” Photon. Nanostruct.: Fundam. Appl. 11(1), 73–84 (2013).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Zhang, G. Qian, Y. Y. Wang, X. J. Xue, F. Shan, R. Z. Li, J. Y. Wu, and X. Y. Zhang, “Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator,” Sci. Rep. 4, 1–6 (2014).

Science (2)

M. L. Brongersma and V. M. Shalaev, “Applied Physics: The Case For Plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[Crossref] [PubMed]

Other (5)

International Roadmap of Semiconductors (ITRS), ITRS 2012 Edition, 2012 Overall Roadmap Technology Characteristics (ORTC) Tables, Performance and Packaged Chips Trends, http://www.itrs.net .

J. J. Ju, S. Park, M. S. Kim, J. T. Kim, S. K. Park, J. M. Lee, J. S. Choe, and M. H. Lee, “Data Transfer for Optical Interconnects using Long Range-SPP Transmission Lines,” in Optical Fibre Communication Conference, paper OW3E-6 (Los Angeles, CA, USA, 2012).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).

Asahi Glass Company, Technical Information Cytop, distributed by Bellex International Corporation, http://www.bellexinternational.com .

J. W. Poulton, W. J. Dally, X. Chen, J. G. Eyles, T. H. Greer, S. G. Tell, and C. T. Gray, “A 0.54 pJ/b 20Gb/s ground-referenced single-ended short-haul serial link in 28nm CMOS for advanced packaging applications,” In IEEE International Solid-State Circuits Conference Digest of Technical Papers, 404–405 (San Francisco, CA, USA, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) and (b): Schematic of the structure of interest, and (c) 20× magnification microscope image of one of the fabricated structures at one end. The pad area is 100×100 μm2 with a 100 μm wide signal strip (Ws), and two 30 μm wide ground strips (Wg) separated by 2 μm gap from optical tapers. (d) Image of a 4.6 mm long fabricated die which includes 21 different microwave-optical transmission lines with straight optical reference waveguides in between.
Fig. 2
Fig. 2 Computed (a) propagation loss, (b) vertical and (c) lateral mode field diameter as a function of gold ground strip width (Wg) and thickness (t1) for a single gold strip waveguide in a homogenous medium. The inset in (b) shows a near-field image of the electric field (Re(Ey)) distribution of the 5 μm wide and 35 nm thick gold strip.
Fig. 3
Fig. 3 (a)–(f) Computed electrical characteristic impedance Z0 of the proposed structure as a function of frequency for different ground (Wg) and signal (Ws) strip widths, and separation (g).
Fig. 4
Fig. 4 Computed electrical response of structures comprised of a 50 μm wide signal strip and 30 μm wide ground strips for different separation sizes (g) and lengths.
Fig. 5
Fig. 5 (a) Illustration of the experimental set-up for the simultaneous excitation of LR-SPP and microwave modes. (b) Measured insertion loss versus waveguide length for 8 and 30 μm wide, 25 nm thick gold strip waveguides. The inset shows a far-field image of the LR-SPP mode output.
Fig. 6
Fig. 6 (a) S-parameter magnitude for a 3 mm long waveguide, and (b) S21 for different lengths.
Fig. 7
Fig. 7 BER measurements of simultaneous and independent 40 Gbit/s optical and 12 Gbit/s electrical signals. The insets show captured eye diagrams. The solid lines are exponential fit curves to measured values.
Fig. 8
Fig. 8 Computed propagation loss versus separation distance (g) and thickness (t1), for ground strips (a) 5 μm and (b) 30 μm wide (Wg). The signal strip width (Ws) and thickness (t2) are 50 μm and 500 nm, respectively. Cytop thickness is assumed to be 15 μm on thick silicon substrate. Dashed lines show propagation loss when Cytop thickness is 100 μm.
Fig. 9
Fig. 9 Computed (a) characteristic impedance and S-parameters when terminated with a (b) 50 Ω load, and (c) 90 Ω load for a structure comprised of a 1 μm wide signal strip (Ws), a 30 μm wide ground strip (Wg), and a gap of 4 μm (g).

Metrics