Abstract

We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic effects in thin-film lanthanum-doped lead zirconate titanate

A. Mukherjee, S. R. J. Brueck, and A. Y. Wu
Opt. Lett. 15(3) 151-153 (1990)

Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics

Rudeger H. T. Wilke, Raegan L. Johnson-Wilke, Vincenzo Cotroneo, William N. Davis, Paul B. Reid, Daniel A. Schwartz, and Susan Trolier-McKinstry
Appl. Opt. 52(14) 3412-3419 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
    [Crossref]
  2. L. Augustin, M. Smit, N. Grote, M. Wale, and R. Visser, “Standardized Process Could Revolutionize Photonic Integration,” http://www.photonics.com/Article.aspx?AID=54836 .
  3. A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).
  4. K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).
  5. C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  6. S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
    [Crossref]
  7. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
    [Crossref]
  8. C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).
  9. M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
    [Crossref]
  10. D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
    [Crossref]
  11. S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
    [Crossref]
  12. K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
    [Crossref]
  13. Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
    [Crossref]
  14. Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
    [Crossref]
  15. G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
    [Crossref]
  16. M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
    [Crossref]
  17. H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
    [Crossref]
  18. S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12(1–12), 7–17 (2004).
    [Crossref]
  19. R. Dekker, J. Klein, and D. Geuzebroek, “Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications,” Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 286–287.
  20. R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).
  21. SolMateS BV, http://www.solmates.nl/ .
  22. PhoeniX Software, http://www.phoenixbv.com/ .
  23. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009), Chap. 1.
  24. D. Rabaey, Low power design essentials (Springer, 2009), Chap. 3.
    [Crossref]
  25. MITx, https://6002x.mitx.mit.edu/wiki/view/EnergyandPower .

2015 (1)

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

2013 (4)

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

2012 (3)

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

2011 (2)

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

2008 (1)

K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

2006 (1)

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

2004 (1)

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12(1–12), 7–17 (2004).
[Crossref]

2003 (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

1998 (1)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Anderson, H.

S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
[Crossref]

Barbieri, L.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Beck, M.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Beeker, W.

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

Bjrk, M. T.

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Bohley, C.

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

Boller, K.

Boschker, H.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Bouwmeester, D.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Bruinink, C.

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

Buria, M.

Burla, M.

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Darvishi, M.

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

Davis, S.

S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
[Crossref]

de Lima, M.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Dekker, R.

R. Dekker, J. Klein, and D. Geuzebroek, “Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications,” Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 286–287.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Dekkers, M.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Desiatov, B.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Dijk, P.

Donati, S.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Elwenspoek, M.

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

Farca, G.

S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
[Crossref]

Fathpour, S.

K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Fuhrmann, D.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Geuzebroek, D.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

R. Dekker, J. Klein, and D. Geuzebroek, “Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications,” Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 286–287.

Gotsmann, B.

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Goykhman, I.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Heideman, R.

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Heideman, R. G.

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Hey, R.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Hoekman, M.

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

Houwman, E.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Hoving, W.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

Hui, R.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009), Chap. 1.

Jalalia, B.

K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Kabla, M.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Karg, S.

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Kim, H.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Klein, E.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Klein, J.

R. Dekker, J. Klein, and D. Geuzebroek, “Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications,” Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 286–287.

Krenner, H.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Leinse, A.

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Levy, U.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Lin Wang, Z.

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

Martini, G.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Meijerink, A.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Meltzer, S.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Muralt, P.

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12(1–12), 7–17 (2004).
[Crossref]

Nachmias, T.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Nazeer, H.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Nguyen, M.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

O’Sullivan, M.

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009), Chap. 1.

Oldenbeuving, R.

Petroff, P.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Rabaey, D.

D. Rabaey, Low power design essentials (Springer, 2009), Chap. 3.
[Crossref]

Riel, H.

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Rijnders, G.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Roeloffzen, C.

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Rommel, D.

S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Santos, P.

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

Schilling, J.

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

Schriever, C.

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

Sebbag, Y.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Signorello, G.

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Stoffer, R.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Taddei, C.

Tas, N.

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

Thon, S.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Trolier-McKinstry, S.

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12(1–12), 7–17 (2004).
[Crossref]

Tsia, K.

K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

van Zalk, M.

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

Wang, W.

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

Wehrspohn, R.

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

Wixforth, A.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Wrhoff, K.

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Xu, S.

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

Yagubizade, H.

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

Yang, Q.

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

Yoshaei, O.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

Zhuang, L.

C. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. Heideman, P. Dijk, R. Oldenbeuving, D. Marpaung, M. Buria, and K. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

Adv. Opt. Technol. (1)

K. Wrhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4(2), 189–207 (2015).

Appl. Phys. Lett. (4)

M. de Lima, M. Beck, R. Hey, and P. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89, 121104 (2006).
[Crossref]

H. Yagubizade, M. Darvishi, M. Elwenspoek, and N. Tas, “A 4th-order band-pass filter using differential readout of two in-phase actuated contour-mode resonators,” Appl. Phys. Lett. 103, 173517 (2013).
[Crossref]

K. Tsia, S. Fathpour, and B. Jalalia, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92, 061109 (2008).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100, 141107 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photon. Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Int. J. Solids Struct. (2)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

C. Schriever, C. Bohley, J. Schilling, and R. Wehrspohn, “Materials,” Int. J. Solids Struct. 5(5), 889–908 (2012).

J. Electroceram. (1)

S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram. 12(1–12), 7–17 (2004).
[Crossref]

J. Micromech. Microeng. (1)

M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures,” J. Micromech. Microeng. 23(2), 025008 (2012).
[Crossref]

J. Nano Lett. (1)

Q. Yang, W. Wang, S. Xu, and Z. Lin Wang, “Enhancing light emission of ZnO microwire-based diodes by piezophototronic effect,” J. Nano Lett. 11(9), 4012–4017 (2011).
[Crossref]

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Nano Lett. (1)

G. Signorello, S. Karg, M. T. Bjrk, B. Gotsmann, and H. Riel, “Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain,” Nano Lett. 13(3), 917–924 (2013).
[Crossref]

Nat. Photonics (1)

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff, A. Wixforth, and H. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photonics 5, 605–609 (2011).
[Crossref]

Opt. Express (1)

Other (10)

S. Davis, D. Rommel, G. Farca, and H. Anderson, “A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture,” Proc. SPIE7050, 705005 (2008).
[Crossref]

L. Augustin, M. Smit, N. Grote, M. Wale, and R. Visser, “Standardized Process Could Revolutionize Photonic Integration,” http://www.photonics.com/Article.aspx?AID=54836 .

A. Leinse, R. Heideman, W. Beeker, M. Hoekman, C. Bruinink, C. Roeloffzen, L. Zhuang, D. Marpaung, and M. Burla, “TriPlextm photonic platform technology: Low-loss waveguide platform for applications from UV to IR,” in 16th European Conference on Integrated Optics, (ECIO, 2012), pp 1–2).

R. Dekker, J. Klein, and D. Geuzebroek, “Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications,” Proceedings of IEEE Photonics Conference (IEEE, 2012), pp. 286–287.

R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. Geuzebroek, E. Klein, R. Stoffer, C. Roeloffzen, L. Zhuang, and A. Meijerink, “Large-scale integrated optics using TriPleX waveguide technology: from UV to IR,” Proc. SPIE7221, 772210R (2009).

SolMateS BV, http://www.solmates.nl/ .

PhoeniX Software, http://www.phoenixbv.com/ .

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009), Chap. 1.

D. Rabaey, Low power design essentials (Springer, 2009), Chap. 3.
[Crossref]

MITx, https://6002x.mitx.mit.edu/wiki/view/EnergyandPower .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Top view of a MZI with a PZT phase shifter on one of the arms. (b) Cross-section overview of the MZI active arm along the dashed line (c).

Fig. 2
Fig. 2

Induced stress distribution, (a) the horizontal direction σxx and (b) the vertical direction σyy, in waveguide structure after applying an electric field of 10 V/μm across top and bottom electrodes. The PZT layer including electrodes is marked in blue in the picture. Clearly, the dominating induced stress contribution in the waveguide region is formed by the horizontal component σxx.

Fig. 3
Fig. 3

The induced change in effective refractive index of waveguide under applied electric field of 1 V/μm.

Fig. 4
Fig. 4

Red dashed line is the measured e31,f responses to applied electric field for a 1 μm thick PZT layer. The marked lines are the simulation results for waveguide structures with 10, 20, 30 and 40 μm top electrode widths and a fixed PZT thickness of 2 μm.

Fig. 5
Fig. 5

Modelling MZI transmission relation (the red dashed line) to the measured optical transmission from the MZI with the PZT thickness of 2 μm and 30 μm top electrode (red squares). Modelling was done with a constant e31 value. The measured data showed by red circles excluded from modelling. The blue solid line shows the calculated results for the corresponding structure.

Fig. 6
Fig. 6

The simulated (blue solid line) and measured (red circles) slopes δneff of waveguides under applied electric field for MZI devices with the PZT thickness of 2 μm and varying the top electrode. The red squares and dashed line show the corresponding VπL.

Fig. 7
Fig. 7

Modulation speed measurement. The red and blue marker are electronic and optic response of the device and the black dashed and solid line are the turn-on transient relation for parallel plate capacitor modelled to data.

Metrics