Abstract

Liquid crystals are superior optical materials for large area displays, but it is considered that their collective and slow-millisecond response makes them useless for ultrafast optical applications. In contrast to that, we here demonstrate an ultrafast optical response of a nematic liquid crystal, which is induced by an intense femtosecond optical impulse. We show that the refractive index of the nematic liquid crystal pentyl-cyanobiphenyl can be modulated at a time scale as fast as 500 fs via a coherently excited optical Kerr effect. The change in the refractive index is in the order of 10−4 at a fluence of 4 mJ/cm2 and is strongly polarization dependent. This unprecedented result opens new ways towards ultrafast all-optical modulation in liquid crystal-based devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extreme nonlinear optics of nematic liquid crystals [Invited]

I. C. Khoo
J. Opt. Soc. Am. B 28(12) A45-A55 (2011)

Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals

I. C. Khoo and Tsung-Hsien Lin
Opt. Lett. 37(15) 3225-3227 (2012)

Real-time holography in azo-dye-doped liquid crystals

Alan G. Chen and David J. Brady
Opt. Lett. 17(6) 441-443 (1992)

References

  • View by:
  • |
  • |
  • |

  1. L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
    [Crossref]
  2. I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
    [Crossref]
  3. H. J. Eichler and R. Macdonald, “Flow-alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67(19), 2666–2669 (1991).
    [Crossref] [PubMed]
  4. L. Lucchetti, F. Simoni, and Y. Reznikov, “Fast optical recording in dye-doped liquid crystals,” Opt. Lett. 24(15), 1062–1064 (1999).
    [Crossref] [PubMed]
  5. L. Lucchetti, D. Fedorenko, O. Francescangeli, Y. Reznikov, and F. Simoni, “Surface reorientation induced by short light pulses in doped liquid crystals,” Opt. Lett. 28(18), 1621–1623 (2003).
    [Crossref] [PubMed]
  6. V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
    [Crossref] [PubMed]
  7. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
    [Crossref]
  8. F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
    [Crossref]
  9. T. V. Truong and Y. R. Shen, “Resonance-enhanced optical reorientation of molecules in liquids via intermolecular interaction,” Phys. Rev. Lett. 99(18), 187802 (2007).
    [Crossref] [PubMed]
  10. F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
    [Crossref]
  11. S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
    [Crossref]
  12. H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
    [Crossref]
  13. N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
    [Crossref] [PubMed]
  14. A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
    [Crossref]
  15. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
    [Crossref]
  16. J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
    [Crossref] [PubMed]
  17. J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
    [Crossref] [PubMed]
  18. J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
    [Crossref]
  19. I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
    [Crossref] [PubMed]
  20. U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
    [Crossref] [PubMed]
  21. G. Tao and R. M. Stratt, “Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra,” J. Phys. Chem. B 110(2), 976–987 (2006).
    [Crossref] [PubMed]
  22. M. Savoini, PhD thesis, Politecnico of Milano (2010).
  23. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
    [Crossref]
  24. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express 18(6), 6097–6107 (2010).
    [Crossref] [PubMed]
  25. N. Vieweg, B. M. Fischer, M. Reuter, P. Kula, R. Dabrowski, M. A. Celik, G. Frenking, M. Koch, and P. U. Jepsen, “Ultrabroadband terahertz spectroscopy of a liquid crystal,” Opt. Express 20(27), 28249–28256 (2012).
    [Crossref] [PubMed]
  26. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
    [Crossref]
  27. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref] [PubMed]
  28. K. Peddireddy, V. S. Jampani, S. Thutupalli, S. Herminghaus, C. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21(25), 30233–30242 (2013).
    [Crossref] [PubMed]

2013 (3)

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
[Crossref] [PubMed]

K. Peddireddy, V. S. Jampani, S. Thutupalli, S. Herminghaus, C. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21(25), 30233–30242 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

2007 (2)

T. V. Truong and Y. R. Shen, “Resonance-enhanced optical reorientation of molecules in liquids via intermolecular interaction,” Phys. Rev. Lett. 99(18), 187802 (2007).
[Crossref] [PubMed]

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
[Crossref] [PubMed]

2006 (4)

J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
[Crossref] [PubMed]

G. Tao and R. M. Stratt, “Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra,” J. Phys. Chem. B 110(2), 976–987 (2006).
[Crossref] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

2005 (1)

J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
[Crossref] [PubMed]

2003 (2)

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

L. Lucchetti, D. Fedorenko, O. Francescangeli, Y. Reznikov, and F. Simoni, “Surface reorientation induced by short light pulses in doped liquid crystals,” Opt. Lett. 28(18), 1621–1623 (2003).
[Crossref] [PubMed]

2002 (1)

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

1999 (1)

1996 (1)

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

1993 (1)

J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
[Crossref]

1991 (1)

H. J. Eichler and R. Macdonald, “Flow-alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67(19), 2666–2669 (1991).
[Crossref] [PubMed]

1990 (1)

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

1989 (1)

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[Crossref]

1987 (2)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
[Crossref]

Bagchi, B.

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

Bahr, C.

Borshch, V.

V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
[Crossref] [PubMed]

Cang, H.

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

Cattaneo, L.

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

Celik, M. A.

Copar, S.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Dabrowski, R.

Deeg, F. W.

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

Ducasse, A.

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Eichler, H. J.

H. J. Eichler and R. Macdonald, “Flow-alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67(19), 2666–2669 (1991).
[Crossref] [PubMed]

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Fayer, M. D.

J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
[Crossref] [PubMed]

J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
[Crossref] [PubMed]

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
[Crossref]

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

Fedorenko, D.

Fischer, B. M.

Francescangeli, O.

Frenking, G.

Freysz, E.

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Gottke, S. D.

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

Greenfield, S. R.

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Herminghaus, S.

Humar, M.

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Hunt, N. T.

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
[Crossref] [PubMed]

Jampani, V. S.

Jansen, C.

Jaye, A. A.

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
[Crossref] [PubMed]

Jepsen, P. U.

Kalpouzos, C.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[Crossref]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

Khoo, I.-C.

I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
[Crossref]

Koch, M.

Kouwer, P. H. J.

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

Krumbholz, N.

Kula, P.

Lavrentovich, O. D.

V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
[Crossref] [PubMed]

Le Calvez, A.

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Li, J.

J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
[Crossref] [PubMed]

J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
[Crossref] [PubMed]

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[Crossref]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

Lucchetti, L.

Macdonald, R.

H. J. Eichler and R. Macdonald, “Flow-alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67(19), 2666–2669 (1991).
[Crossref] [PubMed]

McMorrow, D.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[Crossref]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

Meech, S. R.

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
[Crossref] [PubMed]

Michael, R. R.

I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
[Crossref]

Mikulics, M.

Montant, S.

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Muševic, I.

K. Peddireddy, V. S. Jampani, S. Thutupalli, S. Herminghaus, C. Bahr, and I. Muševič, “Lasing and waveguiding in smectic A liquid crystal optical fibers,” Opt. Express 21(25), 30233–30242 (2013).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Newell, V. J.

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

Novikov, V. N.

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Peddireddy, K.

Rasing, T.

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

Ravnik, M.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Reuter, M.

Reznikov, Y.

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Rowan, A. E.

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Scheller, M.

Shakfa, M. K.

Shen, Y. R.

T. V. Truong and Y. R. Shen, “Resonance-enhanced optical reorientation of molecules in liquids via intermolecular interaction,” Phys. Rev. Lett. 99(18), 187802 (2007).
[Crossref] [PubMed]

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Shiyanovskii, S. V.

V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
[Crossref] [PubMed]

Simoni, F.

Skarabot, M.

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Stankus, J. J.

J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
[Crossref]

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

Stratt, R. M.

G. Tao and R. M. Stratt, “Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra,” J. Phys. Chem. B 110(2), 976–987 (2006).
[Crossref] [PubMed]

Tao, G.

G. Tao and R. M. Stratt, “Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra,” J. Phys. Chem. B 110(2), 976–987 (2006).
[Crossref] [PubMed]

Thutupalli, S.

Tkalec, U.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Torre, R.

J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
[Crossref]

Truong, T. V.

T. V. Truong and Y. R. Shen, “Resonance-enhanced optical reorientation of molecules in liquids via intermolecular interaction,” Phys. Rev. Lett. 99(18), 187802 (2007).
[Crossref] [PubMed]

Vieweg, N.

Wang, I.

J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
[Crossref] [PubMed]

J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
[Crossref] [PubMed]

Wilk, R.

Yan, P.

I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
[Crossref]

Zhuang, X. W.

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

Zumer, S.

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

Žumer, S.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Chem. Phys. Lett. (1)

A. Le Calvez, S. Montant, E. Freysz, A. Ducasse, X. W. Zhuang, and Y. R. Shen, “Ultrashort orientational dynamics of liquid crystals in the smectic-A phase,” Chem. Phys. Lett. 258(5-6), 620–625 (1996).
[Crossref]

IEEE J. Quantum Electron. (2)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[Crossref]

I.-C. Khoo, R. R. Michael, and P. Yan, “Optically-induced molecular reorientation in nematic liquid crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. 23(2), 267–272 (1987).
[Crossref]

J. Appl. Phys. (1)

L. Cattaneo, P. H. J. Kouwer, A. E. Rowan, and T. Rasing, “Sub-millisecond nematic liquid crystal switches using patterned command layer,” J. Appl. Phys. 113(1), 014503 (2013).
[Crossref]

J. Chem. Phys. (5)

J. Li, I. Wang, and M. D. Fayer, “Three homeotropically aligned nematic liquid crystals: Comparison of ultrafast to slow time-scale dynamics,” J. Chem. Phys. 124(4), 044906 (2006).
[Crossref] [PubMed]

F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: Transient grating optical kerr effect measurements,” J. Chem. Phys. 90(12), 6893–6902 (1989).
[Crossref]

F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fayer, “Nonhydrodynamic molecular motions in a complex liquid: Temperature dependent dynamics in pentylcyanobiphenyl,” J. Chem. Phys. 93(5), 3503–3514 (1990).
[Crossref]

S. D. Gottke, H. Cang, B. Bagchi, and M. D. Fayer, “Comparison of the ultrafast to slow time scale dynamics of three liquid crystals in the isotropic phase,” J. Chem. Phys. 116(14), 6339–6347 (2002).
[Crossref]

H. Cang, J. Li, V. N. Novikov, and M. D. Fayer, “Dynamics in supercooled liquids and in the isotropic phase of liquid crystals: A comparison,” J. Chem. Phys. 118(20), 9303–9311 (2003).
[Crossref]

J. Phys. Chem. (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid carbon disulfide,” J. Phys. Chem. 91(8), 2028–2030 (1987).
[Crossref]

J. Phys. Chem. B (2)

J. Li, I. Wang, and M. D. Fayer, “Ultrafast to slow orientational dynamics of a homeotropically aligned nematic liquid crystal,” J. Phys. Chem. B 109(14), 6514–6519 (2005).
[Crossref] [PubMed]

G. Tao and R. M. Stratt, “Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra,” J. Phys. Chem. B 110(2), 976–987 (2006).
[Crossref] [PubMed]

J. Phys. Chem. US. (1)

J. J. Stankus, R. Torre, and M. D. Fayer, “Influence of local liquid structure on orientational dynamics: Isotropic phase of liquid crystals,” J. Phys. Chem. US. 97(37), 9478–9487 (1993).
[Crossref]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3(10), 595–600 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

N. T. Hunt, A. A. Jaye, and S. R. Meech, “Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE),” Phys. Chem. Chem. Phys. 9(18), 2167–2180 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

V. Borshch, S. V. Shiyanovskii, and O. D. Lavrentovich, “Nanosecond electro-optic switching of a liquid crystal,” Phys. Rev. Lett. 111(10), 107802 (2013).
[Crossref] [PubMed]

T. V. Truong and Y. R. Shen, “Resonance-enhanced optical reorientation of molecules in liquids via intermolecular interaction,” Phys. Rev. Lett. 99(18), 187802 (2007).
[Crossref] [PubMed]

H. J. Eichler and R. Macdonald, “Flow-alignment and inertial effects in picosecond laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67(19), 2666–2669 (1991).
[Crossref] [PubMed]

Science (2)

I. Muševič, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science 313(5789), 954–958 (2006).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Other (1)

M. Savoini, PhD thesis, Politecnico of Milano (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Ultrafast response of nematic liquid crystals due to 100 fs excitation pulse in a pump-probe experiment. (a) Scheme of the pump-probe experiment, where x is the pump linear polarization axis and y is the probe linear polarization axis. (b) Time-dependence of the normalized relative transmission of the sample, with the pump (excitation) polarization along the director. The fluence of the pump beam is 4 mJ/cm2 and corresponds to an electric field strength of 660 V/µm. (c) Time dependence of the rotation of polarization of the probe beam for pump polarization along the director.
Fig. 2
Fig. 2 Pump polarization dependence of the ultrafast response in the nematic 5CB liquid crystal. (a) In the nematic phase of 5CB, at 23°C, the normalized relative transmission is polarization-dependent, and the maximum is obtained when both pump and probe polarizations are along the long molecular axes of the NLC. (b) In the isotropic phase, at 36°C, the response does not depend on the direction of the pump polarization, and we get maximum response whenever the probe polarization is rotated into the pump polarization direction.
Fig. 3
Fig. 3 Rotation of light polarization by light in the nematic 5CB liquid crystal. (a) In the nematic phase, maximum polarization rotation of the probe beam of ̴ 0.5° is observed when the pump polarization is along the director and the probe polarization is at 45°. (b) In the isotropic phase, maximum light-induced polarization rotation of the probe beam is independent of the pump polarization direction. For a given pump polarization, it is maximum when the probe polarization is at 45°with respect to the pump polarization.
Fig. 4
Fig. 4 Rotation signal (left axis) and calculated birefringence Δn(t) (right axis) as a function of the pump polarization axis and time, keeping the probe polarization fixed at 45°. The measurement has been performed at 23 °C at a pump fluence of 4 mJ/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δn(t) λ2Δ θ PR (t) 2πd

Metrics