Abstract

We have developed a frequency-comb spectrometer that records 35-nm (4 THz) spectra with 2-pm (250 MHz) spectral sampling and an absolute frequency accuracy of 2 kHz. We achieve a signal-to-noise ratio of ~400 in a measurement time of 8.2 s. The spectrometer is based on a commercial frequency comb decimated by a variable-length, low-finesse Fabry Pérot filter cavity to fully resolve the comb modes as imaged by a virtually imaged phased array (VIPA), diffraction grating and near-IR camera. By tuning the cavity length, spectra derived from all unique decimated combs are acquired and then interleaved to achieve frequency sampling at the comb repetition rate of 250 MHz. We have validated the performance of the spectrometer by comparison with a previous high-precision absorption measurement of H13C14N near 1543 nm. We find excellent agreement, with deviations from the expected line centers and widths of, at most, 1 pm (125 MHz) and 3 pm (360 MHz), respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near infrared frequency comb vernier spectrometer for broadband trace gas detection

Feng Zhu, James Bounds, Aysenur Bicer, James Strohaber, Alexandre A. Kolomenskii, Christoph Gohle, Mahmood Amani, and Hans A. Schuessler
Opt. Express 22(19) 23026-23033 (2014)

Self-referenced, accurate and sensitive optical frequency comb spectroscopy with a virtually imaged phased array spectrometer

Grzegorz Kowzan, Kevin F. Lee, Magdalena Paradowska, Mateusz Borkowski, Piotr Ablewski, Szymon Wójtewicz, Kamila Stec, Daniel Lisak, Martin E. Fermann, Ryszard S. Trawiński, and Piotr Masłowski
Opt. Lett. 41(5) 974-977 (2016)

Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb

Alexandra C. Johansson, Lucile Rutkowski, Anna Filipsson, Thomas Hausmaninger, Gang Zhao, Ove Axner, and Aleksandra Foltynowicz
Opt. Express 26(16) 20633-20648 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Spuler, M. Linne, A. Sappey, and S. Snyder, “Development of a cavity ringdown laser absorption spectrometer for detection of trace levels of mercury,” Appl. Opt. 39, 2480–2486 (2000).
    [Crossref]
  2. F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
    [Crossref]
  3. L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
    [Crossref]
  4. S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
    [Crossref]
  5. H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
    [Crossref]
  6. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
    [Crossref] [PubMed]
  7. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref] [PubMed]
  8. T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
    [Crossref]
  9. D. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. Int. J. 8, 9–38 (2007).
    [Crossref]
  10. K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
    [Crossref]
  11. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
    [Crossref]
  12. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
    [Crossref] [PubMed]
  13. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002).
    [Crossref]
  14. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  15. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
    [Crossref] [PubMed]
  16. A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
    [Crossref]
  17. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
    [Crossref]
  18. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
    [Crossref]
  19. F. Zhu, J. Bounds, A. Bicer, J. Strohaber, A. A. Kolomenskii, C. Gohle, M. Amani, and H. A. Schuessler, “Near infrared frequency comb vernier spectrometer for broadband trace gas detection,” Opt. Express 22, 23026–23033 (2014).
    [Crossref] [PubMed]
  20. L. Rutkowski and J. Morville, “Broadband cavity-enhanced molecular spectra from vernier filtering of a complete frequency comb,” Opt. Lett. 39, 6664–6667 (2014).
    [Crossref] [PubMed]
  21. M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
    [Crossref]
  22. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  23. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [Crossref] [PubMed]
  24. L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
    [Crossref] [PubMed]
  25. T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
    [Crossref]
  26. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
    [Crossref] [PubMed]
  27. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366–368 (1996).
    [Crossref] [PubMed]
  28. A. Ferguson and R. Taylor, “Active mode stabilization of a synchronously pumped mode locked dye laser,” Opt. Comm. 41, 271–276 (1982).
    [Crossref]
  29. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [Crossref]
  30. G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory,  6, 311–329 (1960).
    [Crossref]
  31. W. Demtröder, Laser spectroscopy: basic concepts and instrumentation, 2674 (Springer Science & Business Media, 2003).
  32. S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

2015 (2)

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

2014 (5)

2013 (1)

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

2012 (4)

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref] [PubMed]

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20, 21932–21939 (2012).
[Crossref] [PubMed]

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

2010 (3)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

2008 (2)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

2007 (4)

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

D. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. Int. J. 8, 9–38 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

2005 (1)

S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

2003 (2)

S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
[Crossref]

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

2002 (1)

2000 (1)

1999 (1)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

1996 (1)

1982 (1)

A. Ferguson and R. Taylor, “Active mode stabilization of a synchronously pumped mode locked dye laser,” Opt. Comm. 41, 271–276 (1982).
[Crossref]

1960 (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory,  6, 311–329 (1960).
[Crossref]

Adler, F.

Amani, M.

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Balslev-Clausen, D.

Baumann, E.

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

Bertness, K. A.

S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
[Crossref]

Bicer, A.

Bjork, B.

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
[Crossref]

Bounds, J.

Cancio Pastor, P.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Cassinerio, M.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Castro, M.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Coddington, I.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref] [PubMed]

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Coffey, T.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Coluccelli, N.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Cornell, E. A.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Cossel, K. C.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref] [PubMed]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Couto, F.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

da Silva, M.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

De Natale, P.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Demtröder, W.

W. Demtröder, Laser spectroscopy: basic concepts and instrumentation, 2674 (Springer Science & Business Media, 2003).

Deschênes, J.-D.

Diddams, S.

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Diddams, S. A.

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Dinneen, T.

Eramo, R.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
[Crossref]

Ferguson, A.

A. Ferguson and R. Taylor, “Active mode stabilization of a synchronously pumped mode locked dye laser,” Opt. Comm. 41, 271–276 (1982).
[Crossref]

Field, R. W.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Fleisher, A. J.

Funke, H. H.

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

Galzerano, G.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Genest, J.

Gilbert, S. L.

S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

Giorgetta, F.

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

Giorgetta, F. R.

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

Gohle, C.

F. Zhu, J. Bounds, A. Bicer, J. Strohaber, A. A. Kolomenskii, C. Gohle, M. Amani, and H. A. Schuessler, “Near infrared frequency comb vernier spectrometer for broadband trace gas detection,” Opt. Express 22, 23026–23033 (2014).
[Crossref] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Gresh, D. N.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Grissom, B. L.

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

Hänsch, T. W.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hati, A.

Hodges, J. T.

S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
[Crossref]

Iwakuni, K.

Johnson, T.

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Kirchner, M. S.

Kolomenskii, A. A.

Laporta, P.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Lehman, S. Y.

S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
[Crossref]

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Linne, M.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

McGrew, C. E.

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

Meyer, E. R.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Moore, D.

D. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. Int. J. 8, 9–38 (2007).
[Crossref]

Morville, J.

Mosyagin, N. S.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Neely, T.

Newbury, N.

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

Newbury, N. R.

Nugent-Glandorf, L.

Petrov, A. N.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Potvin, S.

Raynor, M. W.

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Rieker, G. B.

Risby, T. H.

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[Crossref]

Rocha, M.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Roy, J.

Rutkowski, L.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Sappey, A.

Schiller, S.

Schliesser, A.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Schuessler, H. A.

Shirasaki, M.

Siciliani de Cumis, M.

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Sinclair, L. C.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref] [PubMed]

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Skripnikov, L. V.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Snyder, S.

Spuler, S.

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Sthel, M.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Strohaber, J.

Swann, W.

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

Swann, W. C.

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22, 6996–7006 (2014).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

Tavares, J.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Taylor, R.

A. Ferguson and R. Taylor, “Active mode stabilization of a synchronously pumped mode locked dye laser,” Opt. Comm. 41, 271–276 (1982).
[Crossref]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Titov, A. V.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

Tittel, F. K.

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[Crossref]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Turin, G.

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory,  6, 311–329 (1960).
[Crossref]

Udem, T.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Vargas, H.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Veiga, C.

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
[Crossref]

Wang, C.-M.

S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

Wysocki, G.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

Ye, J.

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012).
[Crossref] [PubMed]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Zhu, F.

Zolot, A.

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

F. Couto, M. Sthel, M. Castro, M. da Silva, M. Rocha, J. Tavares, C. Veiga, and H. Vargas, “Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production,” Appl. Phys. B 117, 897–903 (2014).
[Crossref]

L. Nugent-Glandorf, F. R. Giorgetta, and S. A. Diddams, “Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb,” Appl. Phys. B 119, 327–338 (2015).
[Crossref]

T. Johnson and S. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Chem. Phys. Lett. (1)

K. C. Cossel, D. N. Gresh, L. C. Sinclair, T. Coffey, L. V. Skripnikov, A. N. Petrov, N. S. Mosyagin, A. V. Titov, R. W. Field, E. R. Meyer, E. A. Cornell, and J. Ye, “Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment,” Chem. Phys. Lett. 546, 1–11 (2012).
[Crossref]

IRE Trans. Inf. Theory (1)

G. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory,  6, 311–329 (1960).
[Crossref]

J. Breath Res. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 1, 014001 (2007).
[Crossref] [PubMed]

J. Cryst. Growth (1)

S. Y. Lehman, K. A. Bertness, and J. T. Hodges, “Detection of trace water in phosphine with cavity ring-down spectroscopy,” J. Cryst. Growth 250, 262–268 (2003).
[Crossref]

J. Quant. Spect. Rad. Trans. (1)

A. Zolot, F. Giorgetta, E. Baumann, W. Swann, I. Coddington, and N. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” J. Quant. Spect. Rad. Trans. 118, 26–39 (2013).
[Crossref]

Nat. Comm. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Comm. 5, 6192 (2014).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

NIST Special Publication (1)

S. L. Gilbert, W. C. Swann, and C.-M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration–SRM 2519a,” NIST Special Publication 260, 137 (2005).

Opt. Comm. (1)

A. Ferguson and R. Taylor, “Active mode stabilization of a synchronously pumped mode locked dye laser,” Opt. Comm. 41, 271–276 (1982).
[Crossref]

Opt. Eng. (1)

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49, 111123 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (1)

M. Siciliani de Cumis, R. Eramo, N. Coluccelli, M. Cassinerio, G. Galzerano, P. Laporta, P. De Natale, and P. Cancio Pastor, “Tracing part-per-billion line shifts with direct-frequency-comb vernier spectroscopy,” Phys. Rev. A 91, 012505 (2015).
[Crossref]

Phys. Rev. Lett. (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

H. H. Funke, B. L. Grissom, C. E. McGrew, and M. W. Raynor, “Techniques for the measurement of trace moisture in high-purity electronic specialty gases,” Rev. Sci. Instrum. 74, 3909–3933 (2003).
[Crossref]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[Crossref] [PubMed]

Sens. Imag. Int. J. (1)

D. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. Int. J. 8, 9–38 (2007).
[Crossref]

Other (1)

W. Demtröder, Laser spectroscopy: basic concepts and instrumentation, 2674 (Springer Science & Business Media, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified schematic of the experimental system.
Fig. 2
Fig. 2 Depiction of overlap of comb modes (blue vertical lines) with modes of a Fabry-Pérot cavity with a FSR of 4 × fRR, showing transmission of every fourth comb mode (c.f. every 38th in the experiment). The red curve describes the best possible match between comb and cavity. Scanning the cavity length allows transmission of the adjacent subset of comb modes (orange), but transmission of modes far from the optimally matched mode (*) is reduced.
Fig. 3
Fig. 3 Filter-cavity transmission as a function of cavity length detuning from L = c/(2 × νFSR). Positions A and B indicate reference laser transmission by the filter cavity. The 38 local maxima between A and B correspond to optimal transmission of the 38 unique decimated comb subsets with 9.5 GHz mode separation.
Fig. 4
Fig. 4 Schematic of the locking system. The length of the Fabry-Perot (FP) filter cavity is dithered at 10 kHz and the transmitted comb power is detected. The resulting signal is used to lock the cavity length via a proportional-integral (PI) controller implemented on an Arduino Due microcontroller.
Fig. 5
Fig. 5 Top left: Raw camera image showing resolved comb modes. The two brightest spots correspond to the reference laser and horizontal lines mark out one VIPA FSR containing unique spectral data. Top right: Sample image normalized by its corresponding reference image. Bottom: Interleaving multiple spectra derived from filtered comb subsets. Eight adjacent subsets are shown here, with different colors for clarity. Adjacent points are spaced by fRR = 250 MHz and points of the same color are spaced by νFSR = 9.5 GHz. The fully reconstructed spectrum is outlined in grey.
Fig. 6
Fig. 6 The complete spectrum formed by interleaving the 38 individual spectra obtained by varying the cavity length.
Fig. 7
Fig. 7 Close-up of the spectrum presented in Fig. 6 near the P(16) absorption line. The background structure has been removed and the fit (blue) and residuals (top panel) are also shown. Hot-band absorption lines can be seen either side of the main line.
Fig. 8
Fig. 8 Deviation of our line centers and widths from expected values at 92.5 Torr. Displayed uncertainties are 2σ confidence intervals. Solid grey regions indicate uncertainties estimated according to [32]. Small wavelength shifts due to nearby hot-band features can be seen for the P(2), P(7) and P(20) features.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( v ) = ( i = 0 j a i v i ) exp ( n = 1 m b n V ( v ; v n , σ n , γ n ) )

Metrics