Abstract

We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency dependent steering with backward leaky waves via photonic crystal interface layer

Evrim Colak, Humeyra Caglayan, Atilla Ozgur Cakmak, Alessandro Della Villa, Filippo Capolino, and Ekmel Ozbay
Opt. Express 17(12) 9879-9890 (2009)

Beam splitting at the output of photonic crystal waveguides with discrete surface point defects

Qi Wang, Lanlan Zhang, and Qi Li
Opt. Express 18(23) 24245-24257 (2010)

Directional emission from photonic crystal waveguides

Chii-Chang Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann
Opt. Express 14(6) 2423-2428 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
    [Crossref]
  2. S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  3. E. N. Economou, “Surface plasmons in thin films,” Phy. Rev. 182, 539–554 (1969).
    [Crossref]
  4. S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [Crossref]
  5. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  6. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
    [Crossref] [PubMed]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [Crossref] [PubMed]
  8. J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
    [Crossref]
  9. L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [Crossref]
  10. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
    [Crossref]
  11. G. Arjavalingam, W. Robertson, R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528–530 (1993).
    [Crossref] [PubMed]
  12. F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
    [Crossref]
  13. S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
    [Crossref]
  14. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
    [Crossref] [PubMed]
  15. R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
    [Crossref]
  16. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
    [Crossref]
  17. W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Rev. Lett. 93, 201101 (2008).
    [Crossref]
  18. A. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. Soukoulis, “Experimentally excellent beaming in a two-layer dielectric structure,” Opt. Express 22, 23147–23152 (2014).
    [Crossref] [PubMed]
  19. S. Morrison and Y. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 1–3 (2005).
    [Crossref]
  20. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
    [Crossref]
  21. W. Dai and C. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82, 045427 (2010).
    [Crossref]
  22. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
    [Crossref]
  23. J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
    [Crossref] [PubMed]
  24. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
    [Crossref]
  25. N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
    [Crossref]
  26. https://www.comsol.com

2014 (1)

2012 (1)

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
[Crossref]

2011 (1)

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

2010 (2)

W. Dai and C. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82, 045427 (2010).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2008 (3)

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
[Crossref]

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Rev. Lett. 93, 201101 (2008).
[Crossref]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[Crossref]

2007 (2)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

2006 (1)

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

2005 (2)

S. Morrison and Y. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 1–3 (2005).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[Crossref] [PubMed]

2004 (2)

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

2003 (2)

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
[Crossref]

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

1999 (1)

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

1997 (1)

J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

1996 (1)

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

1993 (1)

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phy. Rev. 182, 539–554 (1969).
[Crossref]

Afshinmanesh, F.

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Arjavalingam, G.

Atwater, H.

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Bozhevolnyi, S.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
[Crossref]

Brommer, K.

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Brongersma, M.

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
[Crossref]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[Crossref] [PubMed]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[Crossref]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[Crossref] [PubMed]

Cai, W.

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Capasso, F.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
[Crossref]

Dai, W.

W. Dai and C. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82, 045427 (2010).
[Crossref]

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Rev. Lett. 93, 201101 (2008).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Degiron, A.

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T.

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phy. Rev. 182, 539–554 (1969).
[Crossref]

Fan, S.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Fang, A.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Garca-Vidal, F.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
[Crossref]

Garcia-Vidal, F.

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Gösele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Gramotnev, D.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Halevi, P.

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

He, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

Joannopoulos, J.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

G. Arjavalingam, W. Robertson, R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528–530 (1993).
[Crossref] [PubMed]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Johnson, S.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Kafesaki, M.

Kik, P.

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Kim, H.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Kim, S.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Kivshar, Y.

S. Morrison and Y. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 1–3 (2005).
[Crossref]

Kolodziejski, L.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Koschny, T.

A. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. Soukoulis, “Experimentally excellent beaming in a two-layer dielectric structure,” Opt. Express 22, 23147–23152 (2014).
[Crossref] [PubMed]

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Lee, B.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Lezec, H.

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Lim, Y.

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Liu, J.

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Maier, S.

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Martn-Moreno, L.

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
[Crossref]

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

Meade, R.

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Meltzer, S.

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Morrison, S.

S. Morrison and Y. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 1–3 (2005).
[Crossref]

Moussa, R.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

Müller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
[Crossref]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[Crossref]

I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005).
[Crossref] [PubMed]

Pala, R.

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Qiu, M.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

Ramos-Mendieta, F.

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

Rappe, A.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

Requicha, A.

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Robertson, W.

Ruan, Z.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Soukoulis, C.

A. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. Soukoulis, “Experimentally excellent beaming in a two-layer dielectric structure,” Opt. Express 22, 23147–23152 (2014).
[Crossref] [PubMed]

W. Dai and C. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82, 045427 (2010).
[Crossref]

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Rev. Lett. 93, 201101 (2008).
[Crossref]

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Tasolamprou, A.

Tuttle, G.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Villeneuve, P.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Wang, B.

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Wang, Q.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
[Crossref]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

Yu, N.

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
[Crossref]

Zhang, L.

A. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. Soukoulis, “Experimentally excellent beaming in a two-layer dielectric structure,” Opt. Express 22, 23147–23152 (2014).
[Crossref] [PubMed]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

Adv. Mater. (1)

S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Appl. Phys. Lett. (3)

S. Morrison and Y. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 1–3 (2005).
[Crossref]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single sub-wavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).
[Crossref]

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92, 092114 (2008).
[Crossref]

Appl. Rev. Lett. (2)

W. Dai and C. Soukoulis, “Converging and wave guiding of gaussian beam by two-layer dielectric rods,” Appl. Rev. Lett. 93, 201101 (2008).
[Crossref]

S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Rev. Lett. 85, 4269–4271 (2004).
[Crossref]

J. Appl, Phys. (1)

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength apertures,” J. Appl, Phys. 104, 73108 (2008).
[Crossref]

Laser Photon. Rev. (1)

N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser Photon. Rev. 6, 24–46 (2012).
[Crossref]

Nat. Commun. (1)

J. Liu, R. Pala, F. Afshinmanesh, W. Cai, and M. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nature (1)

J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Photonics and Nanostruct. (1)

J. Bravo-Abad, F. Garca-Vidal, and L. Martn-Moreno, “Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations,” Photonics and Nanostruct. 1, 55–62 (2003).
[Crossref]

Phy. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phy. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. B (5)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
[Crossref]

R. Moussa, B. Wang, G. Tuttle, T. Koschny, and C. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76, 235417 (2007).
[Crossref]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[Crossref]

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

W. Dai and C. Soukoulis, “Control of beaming angles via a subwavelength metallic slit surrounded by grooves,” Phys. Rev. B 82, 045427 (2010).
[Crossref]

Phys. Rev. Lett. (2)

L. Martn-Moreno, F. Garcia-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[Crossref]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903 (2004).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[Crossref] [PubMed]

Solid State Commun. (1)

F. Ramos-Mendieta and P. Halevi, “Surface modes in a 2d array of square dielectric cylinders,” Solid State Commun. 100, 311–314 (1996).
[Crossref]

Other (1)

https://www.comsol.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the structure made of square and circular dielectric alumina rods in air. It consists of the input coupling bilayer, the PC waveguide and the output bilayer where the grating layer with the asymmetric side periodicity b 1 and b 2 is located. (b) Experimental configuration. A dipole receiver antenna is used to measure the local field and the emission properties of the structure in the near and intermediate field region. The receiver antenna scans an area of 0.7 × 0.76 m2, that is approximately ∼ 23 × 25 λ 2.
Fig. 2
Fig. 2 (a) Bulk photonic crystal dispersion diagram. The dispersion curves are calculated via the plane wave expansion method for the infinite periodic structure. The photonic band gap of the bulk PC lies in the range 9.2 – 12.7 GHz. (b) Dispersion curves for the finite PC along with the surface layer. They are calculated by applying the plane wave expansion in the supercell shown above. The surface mode dispersion is plotted in red; it lies within the badgap and below the light line (blue curve), and occurs at 10.1 – 12.2 GHz.
Fig. 3
Fig. 3 (a) Schematic of the surface wave propagation along the bulk PC terminated by the surface corrugation. The profile of the Ez component of the TE polarized field and the wavevector ksm are provided by the eigenmode analysis. (b) Schematic of the surface wave propagation along a bulk PC terminated by the surface corrugation with the addition of a grating layer of b = 3.6α at frequency f = 11.7 GHz. (c) Angular profile of the propagating waves with respect to the grating layer periodicity b, at frequency f = 11.7 GHz, in the intermediate field region as calculated by the full wave calculation. (d) Diffraction angles with respect to the grating layer periodicity b, for frequency ranging from f = 10.2 GHz to f = 11.7 GHz as calculated by the surface wave and grating equation ksm ± Nkp = k 0 sinθ.
Fig. 4
Fig. 4 (a) Experimental x-cross-section profile of the intensity of the intermediate field region within the frequency range of 10 – 12.5 GHz and (b) corresponding numerical simulation. Axis x is parallel to the surface and grating layer and the intensity is measured/calculated at a fixed point along the propagation axis y, at end of the experimental table (y 0 =0.76 m or ∼ 25λ away from the sample). Dual band off-axis beaming is observed at frequencies around 10.20 GHz and 11.70 GHz.
Fig. 5
Fig. 5 Experimental (a) and simulated (b) 2D plot of the strength of the outgoing near and intermediate field at frequency f 1 exp = 11.70 GHz and f 1 sim = 11.68 GHz . Axis x is parallel to the grating layer and axis y perpendicular to the grating layer. Experimental (c) and simulated (d) 2D plot of the intensity of the outgoing near and intermediate field at frequency f 2 exp = 10.20 GHz and f 2 sim = 10.18 GHz . (e) Apparent angular distribution of the beam 1 and 2 at propagation radius equal to 0.7 m. The emerging left going emission, beam 1 propagates along ϕ 1 = −11° apparent angular axis and the emerging right going emission, beam 2, along ϕ 2 = +13° apparent angular axis.
Fig. 6
Fig. 6 (a) Far field radiation pattern for the two operation frequencies, f 1 = 11.7 GHz and f 2 = 10.2 GHz, which optimize beam separation for the frequency splitter in the intermediate field region. (b) Radiation pattern for optimum far field frequency splitting function at f 3 = 12.04 GHz and f 4 = 10.52 GHz.

Metrics