Abstract

The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators

John E. Heebner, Arun K. Sridharan, Jay W. Dawson, Michael J. Messerly, Paul H. Pax, Miro Y. Shverdin, Raymond J. Beach, and C. P. J. Barty
Opt. Express 18(14) 14705-14716 (2010)

Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers

Shadi Naderi, Iyad Dajani, Jacob Grosek, and Timothy Madden
Opt. Express 24(15) 16550-16565 (2016)

Solid-core photonic bandgap fibers for cladding-pumped Raman amplification

Benjamin Ward
Opt. Express 19(12) 11852-11866 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [Crossref] [PubMed]
  3. M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
    [Crossref]
  4. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [Crossref] [PubMed]
  5. L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39(7), 1933–1936 (2014).
    [Crossref] [PubMed]
  6. L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt Ytterbium-Raman fiber laser,” Opt. Express 22(15), 18483–18489 (2014).
    [Crossref] [PubMed]
  7. J. Nilsson, J. K. Sahu, J. N. Jang, R. Selvas, D. C. Hanna, and A. B. Grudinin, “Cladding-pumped Raman fiber amplifier,” in Proceedings of Topical Meeting on Optical Amplifiers and Their Applications, Vancouver, Canada, July14–17, 2002, paper PDP2–1/2/3.
    [Crossref]
  8. J. E. Heebner, A. K. Sridharan, J. W. Dawson, M. J. Messerly, P. H. Pax, M. Y. Shverdin, R. J. Beach, and C. P. J. Barty, “High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators,” Opt. Express 18(14), 14705–14716 (2010).
    [Crossref] [PubMed]
  9. J. Ji, “Cladding-pumped Raman fibre laser sources,” Ph.D. dissertation (University of Southampton, 2011).
  10. J. Ji, C. A. Codemard, and J. Nilsson, “Analysis of spectral bendloss filtering in a cladding-pumped W-type fiber Raman amplifier,” J. Lightwave Technol. 28(15), 2179–2186 (2010).
    [Crossref]
  11. Y. Kang, “Calculations and measurements of Raman gain coefficients of different fiber types,” M.S. Thesis (Virginia Polytechnic Institute and State University, 2002).
  12. N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 19(11), 2551–2557 (2002).
    [Crossref]
  13. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (1)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

2010 (3)

2009 (1)

2008 (1)

2002 (1)

Barty, C. P. J.

Beach, R. J.

Brilliant, N. A.

Calia, D. B.

Clarkson, W. A.

Codemard, C. A.

Cui, S.

Dawson, J. W.

Eberhardt, R.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Feng, Y.

Fink, Y.

Gu, X.

He, B.

Heebner, J. E.

Ji, J.

Jiang, H.

Liu, C.

Messerly, M. J.

Nicholson, J. W.

Nilsson, J.

Pax, P. H.

Qi, Y.

Rakich, P. T.

Rekas, M.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Richardson, D. J.

Schmidt, O.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schreiber, T.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Shverdin, M. Y.

Soljacic, M.

Sridharan, A. K.

Supradeepa, V. R.

Taylor, L. R.

Tünnermann, A.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Zhang, L.

Zhou, J.

Zimer, H.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Appl. Phys. B (1)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (3)

Other (3)

J. Nilsson, J. K. Sahu, J. N. Jang, R. Selvas, D. C. Hanna, and A. B. Grudinin, “Cladding-pumped Raman fiber amplifier,” in Proceedings of Topical Meeting on Optical Amplifiers and Their Applications, Vancouver, Canada, July14–17, 2002, paper PDP2–1/2/3.
[Crossref]

J. Ji, “Cladding-pumped Raman fibre laser sources,” Ph.D. dissertation (University of Southampton, 2011).

Y. Kang, “Calculations and measurements of Raman gain coefficients of different fiber types,” M.S. Thesis (Virginia Polytechnic Institute and State University, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic exploded view of the multi-cladding fiber.
Fig. 2
Fig. 2 (a) Evolution of pump power and all the Stokes components along the fiber for a double cladding Raman fiber amplifier. (b) Conversion efficiency of a single pass co-pumped double cladding RFA with different inner-cladding-to-core area ratio (105 μm inner cladding diameter).
Fig. 3
Fig. 3 (a) Conversion efficiency of three cladding RFA with different radius of cladding 3. (b) Evolution of pump power and all the Stokes components along the fiber for three cladding RFA.
Fig. 4
Fig. 4 (a) Conversion efficiency of RFA with different radius of cladding 3 and cladding 4 (b) Evolution of pump power and all the Stokes components along the fiber for four cladding RFA.
Fig. 5
Fig. 5 (a) Conversion efficiency and brightness enhancement as functions of the number of cladding. (b) Evolution of residual pump light and all the Stokes components as functions of pump power for RFA with a 300m-long four cladding fiber.
Fig. 6
Fig. 6 (a) Dependence of maximum output on the 2nd and 3rd Stokes seed power in the four cladding Raman fiber amplifier. (b) Dependence on the seeding spillover ratio.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d P 0 dz = λ 1 g 1 1 λ 0 A 1 P 0 P 1 ' λ 1 g 1 2 λ 0 A 1 P 0 P 1 α 0 P 0 d P 1 ' dz = g 1 1 A 1 P 0 P 1 ' λ 2 g 2 1 λ 1 A 1 P 1 ' P 2 ' λ 2 g 2 2 λ 1 A 1 P 1 ' P 2 +x P 2 α 1 ' P 1 ' d P 1 dz = g 1 2 A 1 P 0 P 1 λ 2 g 2 3 λ 1 A 2 P 1 P 2 ' λ 2 g 2 4 λ 1 A 2 P 1 P 2 x P 2 α 1 P 2 d P i ' dz = g i 1 A i1 P i1 ' P i ' + g i 3 A i P i1 P i ' λ i+1 g i+1 1 λ i A i P i ' P i+1 ' λ i+1 g i+1 2 λ i A i P i ' P i+1 +x P i α i ' P i ' d P i dz = g i 2 A i1 P i1 ' P i + g i 4 A i P i1 P i λ i+1 g i+1 3 λ i A i+1 P i P i+1 ' λ i+1 g i+1 4 λ i A i+1 P i P i+1 x P i α i P i d P m ' dz = g m 1 A m1 P m1 ' P m ' g m 3 A m P m1 P m ' +x P m α m ' P m d P m dz = g m 2 A m1 P m1 ' P m g m 3 A m P m1 P m x P m α m P m
g i = j=i+2 m1 g Rj ( S j S j+1 ) S i+2 + g Rm ( S m S core ) S i+2 + g Rcore S core S i+2

Metrics