Abstract

We generate white light supercontinuum from slightly sub-picosecond pulses at 1.03 µm and 515 nm. We compare the spectra and stability for various crystals, focusing conditions and pulse durations, and determine the best parameters for sub-picosecond driver pulse duration. Comparing the experimental observations with the theory of white-light generation from Brodeur and Chin, it appears that in this particular range of pump pulse duration, two mechanisms interact and prevent a catastrophic collapse of the beam: multi-photon excitation (typical for ~100-fs-long pulses) and avalanche ionization (typical for >1-ps pulses). The two processes both manifest themselves in different experimental observations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber

Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell
Opt. Lett. 26(17) 1356-1358 (2001)

Highly efficient white light generation from barium fluoride

A. K. Dharmadhikari, F. A. Rajgara, N. C. S. Reddy, A. S. Sandhu, and D. Mathur
Opt. Express 12(4) 695-700 (2004)

Polarization-dependent supercontinuum generation from light filaments in air

Hui Yang, Jie Zhang, Qiuju Zhang, Zuoqiang Hao, Yutong Li, Zhiyuang Zheng, Zhaohua Wang, Quanli Dong, Xin Lu, Zhiyi Wei, Zhengming Sheng, Jin Yu, and Wei Yu
Opt. Lett. 30(5) 534-536 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
    [Crossref]
  2. R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, and P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11(10), 626–628 (1986).
    [Crossref] [PubMed]
  3. P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12(19), 4366–4371 (2004).
    [Crossref] [PubMed]
  4. P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
    [Crossref]
  5. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, “Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber,” J. Opt. Soc. Am. B 24(4), 985–989 (2007).
    [Crossref]
  6. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [Crossref]
  7. G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
    [Crossref]
  8. S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
    [Crossref]
  9. C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).
  10. S. Fang, G. Cirmi, O. D. Mücke, S.-H. Chia, F. X. Kärtner, C. Manzoni, P. Farinello, and G. Cerullo, “Millijoule-level parametric synthesizer generating two-octave-wide optical waveforms for strong-field experiments,” in CLEO Pacific RIM 2013, OSA, paper WB3–1.
  11. H. Injeyan and G. D. Goodno, High Power Laser Handbook (MacGraw-Hill Companies 2011).
  12. J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur, “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica,” J. Opt. Soc. Am. B 23(11), 2317–2322 (2006).
    [Crossref]
  13. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
    [Crossref]
  14. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
    [Crossref]
  15. M. Bradler, P. Baum, and E. Riedle, “Continuum generation in laser host materials towards table-top OPCPA,” in Ultrafast Phenomena 2010, OSA (Optical Society of America, 2010), paper ME25.
  16. A. Pugzlys, P. Malevich, G. Andriukaitis, T. Floery, A. Fernandez, S. Alisauskas, A. Baltuska, L. Tan, C. F. Chua, and P. B. Phua, “High-repetition-rate multi-millijoule femtosecond 2.1 µm Ho:YAG laser,” in Advanced Solid-State Lasers Congress. 2013 (Optical Society of America, 2013), paper AF1A.4.
    [Crossref]
  17. S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
    [Crossref] [PubMed]
  18. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  19. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [Crossref]
  20. X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
    [Crossref]
  21. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
    [Crossref]
  22. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (II Edition) (Academic 2006), Chap. 3.
  23. M. J. Weber, Handbook of Optical Materials (CRC 2003).
  24. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52(12), 1377–1379 (1962).
    [Crossref]
  25. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 µm,” Appl. Opt. 37(21), 4933–4935 (1998).
    [Crossref] [PubMed]
  26. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29(6), 602–604 (2004).
    [Crossref] [PubMed]
  27. Y. Takeuchi, J. Kawanaka, and M. Fujita, “Nonlinear refractive index of a YAG crystal at low temperature,” in CLEO 2009 (Optical Society of America, 2009).
  28. M. D. Levenson, “Feasibility of measuring nonlinear index of refraction by third-order frequency mixing,” IEEE J. Quantum Electron. 10(2), 110–115 (1974).
    [Crossref]
  29. E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
    [Crossref]
  30. A.-L. Calendron, H. Cankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
    [Crossref] [PubMed]
  31. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [Crossref]
  32. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media,” Phys. Rev. Lett. 29(14), 907–910 (1972).
    [Crossref]
  33. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers 2000).

2015 (1)

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

2014 (1)

2012 (1)

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

2011 (2)

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

2009 (2)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

2007 (3)

2006 (2)

2004 (2)

2003 (1)

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

2001 (1)

1999 (1)

1998 (2)

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 µm,” Appl. Opt. 37(21), 4933–4935 (1998).
[Crossref] [PubMed]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

1987 (1)

P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
[Crossref]

1986 (1)

1974 (1)

M. D. Levenson, “Feasibility of measuring nonlinear index of refraction by third-order frequency mixing,” IEEE J. Quantum Electron. 10(2), 110–115 (1974).
[Crossref]

1973 (1)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[Crossref]

1972 (1)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media,” Phys. Rev. Lett. 29(14), 907–910 (1972).
[Crossref]

1962 (1)

Aitchison, J. S.

Akozbek, N.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Alfano, R. R.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
[Crossref]

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, and P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11(10), 626–628 (1986).
[Crossref] [PubMed]

Ashcom, J. B.

Baldeck, P. L.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
[Crossref]

Baltuska, A.

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Becker, A.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Berge, L.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Bhardwaj, S.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Birge, J. R.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Bloembergen, N.

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[Crossref]

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media,” Phys. Rev. Lett. 29(14), 907–910 (1972).
[Crossref]

Bowden, C. M.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
[Crossref]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

Calendron, A.-L.

Cankaya, H.

Cerullo, G.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

Champert, P.-A.

Chau, A. H.

Chekalin, S. V.

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

Chen, L. J.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Chen, X. W.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Chin, S. L.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
[Crossref]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

Cirmi, G.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Coen, S.

Couderc, V.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

Eggleton, B. J.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Fang, S.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

Février, S.

Froehly, C.

Gattass, R. R.

Genty, G.

Golubtsov, I. S.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Harvey, J. D.

Ho, P. P.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
[Crossref]

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, and P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11(10), 626–628 (1986).
[Crossref] [PubMed]

Hong, K. H.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Hong, K.-H.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

Huang, S.-W.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Jimbo, T.

Kandidov, V. P.

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Kärtner, F. X.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

A.-L. Calendron, H. Cankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref] [PubMed]

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Kasparian, J.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Knight, J. C.

Kompanets, V. O.

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

Kosareva, O. G.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Labonté, L.

Leng, Y. X.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Leonhardt, R.

Leproux, P.

Levenson, M. D.

M. D. Levenson, “Feasibility of measuring nonlinear index of refraction by third-order frequency mixing,” IEEE J. Quantum Electron. 10(2), 110–115 (1974).
[Crossref]

Li, E.

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Li, Q. X.

Li, R. X.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Liu, J.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Liu, W.

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

Major, A.

Malitson, I. H.

Manassah, J. T.

Manzoni, C.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

Matsubara, E.

Mazur, E.

Moses, J.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

Mücke, O. D.

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

Muecke, O. D.

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

Nérin, P.

Nikolakakos, I.

Nuter, R.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Page, R.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Roy, P.

Russell, P. S. J.

Schaffer, C. B.

Sekikawa, T.

Skupin, S.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Small, D. L.

Smetanina, E. O.

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

Smith, P. W. E.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

Tombelaine, V.

Vozzi, C.

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

Wadsworth, W. J.

Wolf, J. P.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Xu, Z. Z.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media,” Phys. Rev. Lett. 29(14), 907–910 (1972).
[Crossref]

Yamane, K.

Yamashita, M.

Yoshino, F.

Zelmon, D. E.

Zhu, Y.

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B: Lasers Opt. 77(2–3), 149–165 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. D. Levenson, “Feasibility of measuring nonlinear index of refraction by third-order frequency mixing,” IEEE J. Quantum Electron. 10(2), 110–115 (1974).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

Laser Photonics Rev. (2)

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photonics Rev. 5(3), 323–351 (2011).
[Crossref]

C. Manzoni, O. D. Muecke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser Photonics Rev. 9(2), 129-171 (2015).

Nat. Photonics (2)

S.-W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5(8), 475–479 (2011).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

Opt. Commun. (2)

X. W. Chen, Y. X. Leng, J. Liu, Y. Zhu, R. X. Li, and Z. Z. Xu, “Pulse self-compression in normally dispersive bulk media,” Opt. Commun. 259(1), 331–335 (2006).
[Crossref]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and limiting diameter of filaments induced by light-pulses in transparent media,” Phys. Rev. Lett. 29(14), 907–910 (1972).
[Crossref]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998).
[Crossref]

Quantum Electron. (1)

E. O. Smetanina, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, “Femtosecond laser pulse filamentation under anomalous dispersion in fused silica. Part 1. Numerical investigation,” Quantum Electron. 42(10), 913–919 (2012).
[Crossref]

Rep. Prog. Phys. (1)

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Rev. Phys. Appl. (1)

P. L. Baldeck, P. P. Ho, and R. R. Alfano, “Effects of self, induced and cross phase modulations on the generation of picosecond and femtosecond white-light supercontinua,” Rev. Phys. Appl. 22(12), 1677–1694 (1987).
[Crossref]

Other (8)

M. Bradler, P. Baum, and E. Riedle, “Continuum generation in laser host materials towards table-top OPCPA,” in Ultrafast Phenomena 2010, OSA (Optical Society of America, 2010), paper ME25.

A. Pugzlys, P. Malevich, G. Andriukaitis, T. Floery, A. Fernandez, S. Alisauskas, A. Baltuska, L. Tan, C. F. Chua, and P. B. Phua, “High-repetition-rate multi-millijoule femtosecond 2.1 µm Ho:YAG laser,” in Advanced Solid-State Lasers Congress. 2013 (Optical Society of America, 2013), paper AF1A.4.
[Crossref]

S. Fang, G. Cirmi, O. D. Mücke, S.-H. Chia, F. X. Kärtner, C. Manzoni, P. Farinello, and G. Cerullo, “Millijoule-level parametric synthesizer generating two-octave-wide optical waveforms for strong-field experiments,” in CLEO Pacific RIM 2013, OSA, paper WB3–1.

H. Injeyan and G. D. Goodno, High Power Laser Handbook (MacGraw-Hill Companies 2011).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers 2000).

Y. Takeuchi, J. Kawanaka, and M. Fujita, “Nonlinear refractive index of a YAG crystal at low temperature,” in CLEO 2009 (Optical Society of America, 2009).

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (II Edition) (Academic 2006), Chap. 3.

M. J. Weber, Handbook of Optical Materials (CRC 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Layout of the setup for characterization of white-light generated with sub-picosecond pulses. PM: powermeter, FM: flip-mirror, PD: photodiode, Spect: Spectrometer, X1: crystal, M1 to M6: mirrors, L1 to L4: lenses, Att: attenuator, F: filter sets.
Fig. 2
Fig. 2 WL-supercontinua obtained with 6 mm YAG (a) and sapphire (b) under different focusing conditions. On (a), the broadening toward the visible and the infrared as well as the driving pulses and the spectral hole due to the filtering of the driver are indicated.
Fig. 3
Fig. 3 Spectral width of visible (blue) and IR (red) continua obtained with 6 mm YAG (dashed) and 6 mm sapphire (solid). The full spectral width is taken at 5% from the maximum amplitude of each wing.
Fig. 4
Fig. 4 Power contained in the visible and IR- continua, vs. intensity (a) and divergence (b) of the input beam. The crystals used here were YAG and sapphire, each 6 mm long.
Fig. 5
Fig. 5 WL-supercontinua obtained with 10 mm YAG crystal for different focusing conditions of the driver pulses.
Fig. 6
Fig. 6 Spectral width calculated at 5% of the maximum amplitude of the visible and IR-continua obtained with 10 mm and 6 mm YAG crystals.
Fig. 7
Fig. 7 Power contained in the visible and IR supercontinua, vs. intensity (a) and divergence (b) of the input beam, for 6 mm and 10 mm YAG crystal lengths.
Fig. 8
Fig. 8 Driving beam profile measured after the crystal in 3 configurations: without filament (a), at the threshold of filamentation (b) and for the established filament (c). Profiles were taken by reducing progressively the IR input power from the settings for a stable filament down to vanishing of the filament.
Fig. 9
Fig. 9 Supercontinua obtained with 515 nm driving pulses in 6 mm long sapphire and YAG crystals. In the case of YAG, 3 different focusing conditions lead to different spectral broadening.
Fig. 10
Fig. 10 Influence of chirp on the WLG. The WL-continua are shown in (a), the evolution of spectral width for visible and IR-continua are shown in (b) and the power and rms stability as a function of group delay dispersion in (c). The solid lines show the power evolution whereas the dashed curve displays the rms stability.
Fig. 11
Fig. 11 Influence of the transform-limited pulse duration on the WLG process. The generated continua are shown in (a), the evolution of the spectral width in (b), and the power and rms stability vs. dispersion in (c). The solid lines show the power evolution whereas the dashed curve displays the rms stability.
Fig. 12
Fig. 12 FROG measurement of the signal pulses after the second OPA. The measured (a) and retrieved (b) FROG traces are shown in the first row and the retrieved spectral (c) and intensity (d) profiles in the second row (TL, transform limited).

Tables (2)

Tables Icon

Table 1 Comparison of the material parameters for WLG, from [2328]: linear index of refraction n0, nonlinear index of refraction n2, are given for YAG and sapphire for the wavelengths λ = 1030 nm and 515 nm as well as their bandgap energy Egap and zero-dispersion wavelength ZWD

Tables Icon

Table 2 Experimental parameters of the driving laser: focal lengths, calculated spot sizes in x and y directions and divergences.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P crit =α λ 2 4π n 0 n 2

Metrics