Abstract

We present a two-photon microscope that images the full extent of murine cortex with an objective-limited spatial resolution across an 8 mm by 10 mm field. The lateral resolution is approximately 1 µm and the maximum scan speed is 5 mm/ms. The scan pathway employs large diameter compound lenses to minimize aberrations and performs near theoretical limits. We demonstrate the special utility of the microscope by recording resting-state vasomotion across both hemispheres of the murine brain through a transcranial window and by imaging histological sections without the need to stitch.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

Y. Kremer, J.-F. Léger, R. Lapole, N. Honnorat, Y. Candela, S. Dieudonné, and L. Bourdieu
Opt. Express 16(14) 10066-10076 (2008)

In vivo two-photon microscopy of the hippocampus using glass plugs

Mary Grace M. Velasco and Michael J. Levene
Biomed. Opt. Express 5(6) 1700-1708 (2014)

Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens

Benjamin F. Grewe, Fabian F. Voigt, Marcel van ’t Hoff, and Fritjof Helmchen
Biomed. Opt. Express 2(7) 2035-2046 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
    [Crossref] [PubMed]
  2. S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
    [Crossref] [PubMed]
  3. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
    [Crossref] [PubMed]
  4. J. M. Palva and S. Palva, “Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series,” Neuroimage 62(4), 2201–2211 (2012).
    [Crossref] [PubMed]
  5. M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
    [Crossref] [PubMed]
  6. P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
    [Crossref] [PubMed]
  7. J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
    [Crossref] [PubMed]
  8. P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
    [Crossref] [PubMed]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  10. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
    [Crossref] [PubMed]
  11. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  12. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
    [Crossref] [PubMed]
  13. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
    [Crossref] [PubMed]
  14. J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
    [Crossref] [PubMed]
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light, Sixth edition (Pergamon Press, 1980)
  16. W. J. Smith, Practical Optical System Layout: And Use of Stock Lenses (McGraw-Hill, 1997)
  17. A. Negrean and H. D. Mansvelder, “Optimal lens design and use in laser-scanning microscopy,” Biomed. Opt. Express 5(5), 1588–1609 (2014).
    [Crossref] [PubMed]
  18. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
    [Crossref] [PubMed]
  19. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  20. P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
    [Crossref]
  21. W. J. Bates, “A wavefront shearing interferometer,” Proc. R. Soc. Lond. 59(6), 940–950 (1947).
    [Crossref]
  22. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source,” Appl. Opt. 3(4), 531–534 (1964).
    [Crossref]
  23. S. Okuda, T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials,” Appl. Opt. 39(28), 5179–5186 (2000).
    [Crossref] [PubMed]
  24. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  25. S. S. Segal and B. R. Duling, “Flow control among microvessels coordinated by intercellular conduction,” Science 234(4778), 868–870 (1986).
    [Crossref] [PubMed]
  26. G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control,” Circ. Res. 87(6), 474–479 (2000).
    [Crossref] [PubMed]
  27. I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
    [Crossref] [PubMed]
  28. J. N. Stirman, I. T. Smith, M. W. Kudenov, and S. L. Smith, “Wide field-of-view, twin-region two-photon imaging across extended cortical networks” http://www.biorxiv.org/content/early/2014/11/12/011320.article-metrics (2014).
  29. A. Y. Shih, C. Mateo, P. J. Drew, P. S. Tsai, and D. Kleinfeld, “A polished and reinforced thinned skull window for long-term imaging and optical manipulation of the mouse cortex”. J. Visual. Exper. http://www.jove.com/video/3742 (2012).
  30. P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
    [Crossref] [PubMed]

2014 (2)

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

A. Negrean and H. D. Mansvelder, “Optimal lens design and use in laser-scanning microscopy,” Biomed. Opt. Express 5(5), 1588–1609 (2014).
[Crossref] [PubMed]

2013 (2)

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (2)

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

J. M. Palva and S. Palva, “Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series,” Neuroimage 62(4), 2201–2211 (2012).
[Crossref] [PubMed]

2011 (1)

P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
[Crossref] [PubMed]

2010 (4)

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

2009 (1)

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

2007 (2)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2003 (1)

D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
[Crossref] [PubMed]

2000 (2)

S. Okuda, T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials,” Appl. Opt. 39(28), 5179–5186 (2000).
[Crossref] [PubMed]

G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control,” Circ. Res. 87(6), 474–479 (2000).
[Crossref] [PubMed]

1998 (1)

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

1997 (2)

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

1986 (1)

S. S. Segal and B. R. Duling, “Flow control among microvessels coordinated by intercellular conduction,” Science 234(4778), 868–870 (1986).
[Crossref] [PubMed]

1964 (1)

1947 (1)

W. J. Bates, “A wavefront shearing interferometer,” Proc. R. Soc. Lond. 59(6), 940–950 (1947).
[Crossref]

Akassoglou, K.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

Baohan, A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Bates, W. J.

W. J. Bates, “A wavefront shearing interferometer,” Proc. R. Soc. Lond. 59(6), 940–950 (1947).
[Crossref]

Blinder, P.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Campbell, K.

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Chen, T. W.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Davalos, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

Deisseroth, K.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Drew, P. J.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Driscoll, J. D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

Duling, B. R.

S. S. Segal and B. R. Duling, “Flow control among microvessels coordinated by intercellular conduction,” Science 234(4778), 868–870 (1986).
[Crossref] [PubMed]

Durand, R.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Duyn, J. H.

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

Emerson, G. G.

G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control,” Circ. Res. 87(6), 474–479 (2000).
[Crossref] [PubMed]

Fenno, L. E.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Fox, M. D.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Freund, Y.

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

Friedman, B.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Glynn, P.

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

Goshen, I.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Gradinaru, V.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Grewe, B. F.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Groisman, A.

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Hu, X.

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

Jayaraman, V.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kam, Z.

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Kamiya, K.

Karten, H. J.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Kaufhold, J. P.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Kerr, R. A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kim, D. S.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Kim, H.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Kim, T.

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Kitch, L. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Kleinfeld, D.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

Knutsen, P. M.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Lecoq, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Lee, T.-M.

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

Leopold, D. A.

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
[Crossref] [PubMed]

Li, J. Z.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Logothetis, N. K.

D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
[Crossref] [PubMed]

Looger, L. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Lyden, P. D.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Maier, A.

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

Mansvelder, H. D.

Matthews, D. W.

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

Migliori, B.

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Mitra, P. P.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

Miyashiro, H.

Murayama, Y.

D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
[Crossref] [PubMed]

Murty, M. V. R. K.

Nayak, A. S.

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

Negrean, A.

Nishimura, N.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

Nomura, T.

Ogawa, S.

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

Okuda, S.

Orger, M. B.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Palva, J. M.

J. M. Palva and S. Palva, “Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series,” Neuroimage 62(4), 2201–2211 (2012).
[Crossref] [PubMed]

Palva, S.

J. M. Palva and S. Palva, “Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series,” Neuroimage 62(4), 2201–2211 (2012).
[Crossref] [PubMed]

Pulver, S. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Raichle, M. E.

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Ramakrishnan, C.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Renninger, S. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Savall, J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

Schnitzer, M. J.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Schölvinck, M. L.

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

Schreiter, E. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Segal, S. S.

G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control,” Circ. Res. 87(6), 474–479 (2000).
[Crossref] [PubMed]

S. S. Segal and B. R. Duling, “Flow control among microvessels coordinated by intercellular conduction,” Science 234(4778), 868–870 (1986).
[Crossref] [PubMed]

Shih, A. Y.

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sun, Y.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Svoboda, K.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

Tank, D. W.

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

Tashiro, H.

Tsai, P. S.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Ugurbil, K.

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

Valmianski, I.

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

Vucinic, D.

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wardill, T. J.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Ye, F. Q.

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

Yoshikawa, K.

Zhang, F.

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. S. Tsai, B. Migliori, K. Campbell, T. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[Crossref]

Biomed. Opt. Express (1)

Cereb. Cortex (1)

D. A. Leopold, Y. Murayama, and N. K. Logothetis, “Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging,” Cereb. Cortex 13(4), 422–433 (2003).
[Crossref] [PubMed]

Circ. Res. (1)

G. G. Emerson and S. S. Segal, “Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control,” Circ. Res. 87(6), 474–479 (2000).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab. 32(7), 1277–1309 (2012).
[Crossref] [PubMed]

J. Neurophysiol. (1)

I. Valmianski, A. Y. Shih, J. D. Driscoll, D. W. Matthews, Y. Freund, and D. Kleinfeld, “Automatic identification of fluorescently labeled brain cells for rapid functional imaging,” J. Neurophysiol. 104(3), 1803–1811 (2010).
[Crossref] [PubMed]

J. Neurosci. (1)

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels,” J. Neurosci. 29(46), 14553–14570 (2009).
[Crossref] [PubMed]

Magn. Reson. Med. (2)

S. Ogawa, T.-M. Lee, A. S. Nayak, and P. Glynn, “Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med. 14(1), 68–78 (1990).
[Crossref] [PubMed]

P. P. Mitra, S. Ogawa, X. Hu, and K. Uğurbil, “The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging,” Magn. Reson. Med. 37(4), 511–518 (1997).
[Crossref] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010).
[Crossref] [PubMed]

Nat. Neurosci. (1)

J. Lecoq, J. Savall, D. Vučinić, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, “Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging,” Nat. Neurosci. 17(12), 1825–1829 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref] [PubMed]

Nature (3)

J. H. Lee, R. Durand, V. Gradinaru, F. Zhang, I. Goshen, D. S. Kim, L. E. Fenno, C. Ramakrishnan, and K. Deisseroth, “Global and local fMRI signals driven by neurons defined optogenetically by type and wiring,” Nature 465(7299), 788–792 (2010).
[Crossref] [PubMed]

K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Neuroimage (1)

J. M. Palva and S. Palva, “Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series,” Neuroimage 62(4), 2201–2211 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. L. Schölvinck, A. Maier, F. Q. Ye, J. H. Duyn, and D. A. Leopold, “Neural basis of global resting-state fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 107(22), 10238–10243 (2010).
[Crossref] [PubMed]

P. J. Drew, A. Y. Shih, and D. Kleinfeld, “Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity,” Proc. Natl. Acad. Sci. U.S.A. 108(20), 8473–8478 (2011).
[Crossref] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Proc. R. Soc. Lond. (1)

W. J. Bates, “A wavefront shearing interferometer,” Proc. R. Soc. Lond. 59(6), 940–950 (1947).
[Crossref]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

S. S. Segal and B. R. Duling, “Flow control among microvessels coordinated by intercellular conduction,” Science 234(4778), 868–870 (1986).
[Crossref] [PubMed]

Other (4)

J. N. Stirman, I. T. Smith, M. W. Kudenov, and S. L. Smith, “Wide field-of-view, twin-region two-photon imaging across extended cortical networks” http://www.biorxiv.org/content/early/2014/11/12/011320.article-metrics (2014).

A. Y. Shih, C. Mateo, P. J. Drew, P. S. Tsai, and D. Kleinfeld, “A polished and reinforced thinned skull window for long-term imaging and optical manipulation of the mouse cortex”. J. Visual. Exper. http://www.jove.com/video/3742 (2012).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light, Sixth edition (Pergamon Press, 1980)

W. J. Smith, Practical Optical System Layout: And Use of Stock Lenses (McGraw-Hill, 1997)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design issues of the ultra-large-field-of-view two-photon scanning microscope. (a) Illustration of scan-induced aberrations through a spherical singlet lens in a configuration that corresponds to a scan lens. Scanning across a lens maintains on-axis behavior in the direction perpendicular to the scan, yet results in off-axis behavior along the scan dimension, with a reduced effective focal length at increasing off-axis scan angles. (b,c) The on-axis scan beam (red rays) converges at the paraxial focal plane (plane iii, which would be conjugate to the sample plane in a scanning microscope) but the off-axis scan beam (green rays) converges closer to the lens with separate horizontal (plane i) and vertical foci (plane ii). The focal plane intensity maps explicitly show the resulting astigmatism. An intensity of exactly one is the diffraction limited peak value; the maximums for panel b are i: 0.016, ii: 0.035, and iii: 1.000 and those for panel c are i: 0.134, ii: 0.114, and iii: 0.014.

Fig. 2
Fig. 2

Calculated performance of the ultra-large-field-of-view two-photon scanning system. (a) Unfolded schematic of the optical layout of the fully corrected system; element separations are drawn only approximately to scale and the detection system is shown in Fig. 3(a). (b) The predicted PSF with the beam on- and off-axis for the fully corrected system. The color scale of the calculated PSFs have a common normalization. (c) Plots of the axial and lateral extent of the PSF. (d) The theoretical focal volume, calculated as the ellipsoid enclosed by the predicted half-maximal two-photon intensity points along the optical axis and the half-maximal intensity ellipse in the focal plane, for the system with only the on-axis correction versus full system corrections for scan-induced aberrations. The limiting volume on axis is 10 µm3.

Fig. 3
Fig. 3

Calculated performance of the detection system for the ultra-large-field-of-view scanning microscope. (a) Unfolded schematic of the optical layout of the full pathway; element separations are drawn only approximately to scale. (b) The predicted collection of rays at the plane of the active area of the photomultiplier tube for three exit angles from the back aperture of the objective.

Fig. 4
Fig. 4

Beam characteristic of the ultra-large-field-of-view two-photon scanning microscope. (a) Experimental verification of beam collimation across the full range of scan angles utilizing an interferometric shear plate. The rotation of the interference fringes at large scan angles, found from the slopes of the fringes (yellow lines) for the center and x = 4.3 mm scan positions, is consistent with a residual beam divergence of less than 1 mrad. (b) The envelope of the interferometric autocorrelation of the laser pulses evaluated through the full optical path of the microscope at the focus of the objective. The calculated fit (red) to the envelope of the experimental data (blue) is consistent with an initial pulse width of 110 fs (FWHM) that is chirped to a final width of 400 fs.

Fig. 5
Fig. 5

Performance of the ultra-large-field-of-view two-photon scanning microscope. (a) Two-photon intensity measurements from a uniform bath of fluorescein and accompanying map of contours of constant intensity. (b) Intensity profiles along the X- and Y-axes of the data in panel a. We further show intensity data obtained with the beam parked on-axis and the objective tilted about an axis in the plane of the back aperture; these measurements provide an upper bound on the intensity attainable with this objective. (c) Experimental measurements of the PSF as a function of scan angle. The color scale for the measured PSFs are all self-normalized. Although this represents a significant deviation from a flat field, the maximal residual beam convergence for the scan system remains relatively moderate, equivalent to a downstream focus of 20 m. (d, e) Plots of the axial and lateral extent of the PSFs. Red and blue data points represent the performance of the system under standard scanning conditions. Green data points are the PSF found by tilting the objective; these represent the objective-limited performance of the system. (f) The measured shift in the height of the focal spot as a function of scan position along with the calculated height based on a residual scan-dependent beam convergence.

Fig. 6
Fig. 6

Two-photon imaging (λ0 = 800 nm) of vasomotion in cortical arterioles across both hemispheres of an awake, head-fixed mouse through dual transcranial windows. Blood plasma is stained with fluorescein dextran. (a) Maximally projected image stack across 500 µm of the preparation. The arbitrary-line-scan path (yellow) spans both hemispheres and operated at 71 Hz. The dark region in the middle corresponds to a physical mask placed over the remaining cranial bone above the midline. The expanded images are single planes in each hemisphere and serve to highlight the path of the line-scan through individual vessels whose diameters were concurrently monitored. (b) Vasomotor oscillations measured simultaneously from pial arteries in the right (green) and left (red) hemispheres. An expanded and overlaid view of the highlighted time band (gray) is shown on the right. (c) Spectral power of variation in diameter from the two arterioles and a venule (panel a) indicate vasomotion in the arterioles but not in the venule. Spectra were calculated from 540 s traces and a bandwidth (FWHM) of 0.03 Hz. The system noise (gray) was found by measuring the diameter of 8 to 20 µm fibers imbedded in clear cement and measured 3 to 4 mm off axis. The data represents an average over 24 measurements. (d) Cross-correlation of the diameter for the arterioles from panel b reveals strong synchrony of the arterial diameter oscillations across hemispheres. The time-lag at the peak is 0.0 ± 0.1 s. (e) The black curve is the magnitude of the spectral coherence between the two arterioles as calculated with a bandwidth of 0.04 Hz. The gray curve is the coherence for two fibers across an equivalent sized field.

Fig. 7
Fig. 7

Volumetric two-photon imaging (λ0 = 800 nm) of the vasculature in one hemisphere of mouse cortex. Blood plasma is stained with fluorescein dextran. (a) Cortical vasculature through a thin skull window that is projected over 210 µm. (b) Descending planar images at different depths within the cyan box in panel a. Each image is the average of ten optical sections. The depth is limited by the laser power, 80 mW at the focus. (c) The expanded field within the cyan box in panel a shows a single planar field acquired at a depth of 110 µm below the pial surface and a scan path for functional imaging of blood flow. The segment along the vessel (magenta) tracks individual RBCs and that perpendicular to the vessel (green) reports the diameter. (d) Scan path imaging through the capillary. At mid-height in image, the broad segment with dark streaks indicate the passing of RBCs; the speed of the RBCs is inferred from the slop of the streaks. The thin segment in the lower portion of the image reports the diameter of the vessel.

Fig. 8
Fig. 8

Two-photon imaging (λ0 = 900 nm) of a fixed and cleared coronal section from a mouse that expressed enhanced green fluorescent protein in a sparse subset of cortical and hippocampal neurons. The excitation wavelength was 900 nm. (a) Maximally projected image stack across 500 µm of a 1.0-mm thick slice of tissue; data obtained at 2.2 µm per Z-section. (b) Highlight of the hippocampal region; yellow box in panel a. (c) Highlight of the hippocampal cells from panel a; the Z-projections are across ~60 µm of tissue at different depths into the tissue section, as indicated, and the Y-projection is across ~15 µm of tissue with the corresponding axial bands demarcated.

Tables (1)

Tables Icon

Table 1 Sensitivity analysis for misplacement of lenses along the optical axis.

Metrics