Abstract

We investigate the eight-wave mixing (EWM) process involving highly excited Rydberg states with the assistance of coexisting electromagnetically induced transparency (EIT) windows in a thermal 85Rb vapor both theoretically and experimentally. By use of a disturbance-free optical detection method, the Rydberg EWM characterized by multiple sets of spin coherence is presented via the interplay and competition between the dressing-state effects and excitation blockade caused by strong Rydberg-Rydberg interaction. Such interplay and competition can be demonstrated by the intensity evolutions of multi-wave mixing (MWM) signals via controlling the atomic density, the frequency detuning and Rabi frequencies of corresponding laser fields. The observed Rydberg EWM tailored by EIT windows can possess of much narrower linewidth <30MHz and provide a new way for the study of Rydberg effect in the atomic ensemble above room temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel Rydberg eight-wave mixing process controlled in the nonlinear phase of a circularly polarized field

Junling Che, Zhaoyang Zhang, Mingliang Hu, Xuewei Shi, and Yanpeng Zhang
Opt. Express 26(3) 3054-3066 (2018)

Parametric amplification of Rydberg six- and eight-wave mixing processes

Zhaoyang Zhang, Ji Guo, Bingling Gu, Ling Hao, Gaoguo Yang, Kun Wang, and Yanpeng Zhang
Photon. Res. 6(7) 713-720 (2018)

Controlling Rydberg-dressed four-wave mixing via dual electromagnetically induced transparency windows

Zhaoyang Zhang, Haijun Tang, Irfan Ahmed, Noor Ahmed, Ghulam Abbas Khan, Abdul Rasheed Mahesar, and Yanpeng Zhang
J. Opt. Soc. Am. B 33(8) 1661-1667 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Gallagher, Rydberg Atoms (Cambridge University, 1994).
  2. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
    [Crossref] [PubMed]
  3. K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
    [Crossref] [PubMed]
  4. M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
    [Crossref]
  5. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
    [Crossref]
  6. V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
    [Crossref] [PubMed]
  7. Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336(6083), 887–889 (2012).
    [Crossref] [PubMed]
  8. B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
    [Crossref] [PubMed]
  9. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  10. M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
    [Crossref]
  11. M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).
  12. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
    [Crossref] [PubMed]
  13. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [Crossref] [PubMed]
  14. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
    [Crossref]
  15. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
    [Crossref] [PubMed]
  16. D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
    [Crossref] [PubMed]
  17. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
    [Crossref] [PubMed]
  18. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
    [Crossref] [PubMed]
  19. T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
    [Crossref] [PubMed]
  20. C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
    [Crossref] [PubMed]
  21. B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
    [Crossref] [PubMed]
  22. A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
    [Crossref]
  23. E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
    [Crossref]
  24. D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
    [Crossref] [PubMed]
  25. G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
    [Crossref]
  26. M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
    [Crossref] [PubMed]
  27. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref] [PubMed]
  28. J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
    [Crossref]
  29. K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
    [Crossref]
  30. L. Zhang, Z. Feng, J. Zhao, C. Li, and S. Jia, “Evolution of the pairs of ultracold Rydberg atoms in the repulsive potential,” Opt. Express 18(11), 11599–11606 (2010).
    [Crossref] [PubMed]
  31. J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
    [Crossref]
  32. W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
    [Crossref]
  33. H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
    [PubMed]

2015 (1)

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

2014 (1)

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

2013 (3)

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
[PubMed]

2012 (3)

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336(6083), 887–889 (2012).
[Crossref] [PubMed]

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

2011 (3)

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
[Crossref] [PubMed]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
[Crossref] [PubMed]

2010 (3)

M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

L. Zhang, Z. Feng, J. Zhao, C. Li, and S. Jia, “Evolution of the pairs of ultracold Rydberg atoms in the repulsive potential,” Opt. Express 18(11), 11599–11606 (2010).
[Crossref] [PubMed]

2009 (3)

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

2008 (2)

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
[Crossref]

2007 (2)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

2005 (1)

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

2004 (2)

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

2003 (1)

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

2000 (2)

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).

1999 (1)

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

1996 (1)

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

1987 (1)

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

1982 (1)

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

Adams, C. S.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Amthor, T.

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Baluktsian, T.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Brekke, E.

E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
[Crossref]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Büchler, H. P.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Carter, J. D.

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

Che, J.

Che, J. L.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Côté, R.

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Day, J. O.

E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
[Crossref]

Derevianko, A.

V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
[Crossref] [PubMed]

Dudin, Y. O.

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336(6083), 887–889 (2012).
[Crossref] [PubMed]

Epple, G.

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

Evers, J.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Eyler, E. E.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Farooqi, S. M.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Feng, Z.

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Fleischhauer, M.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
[Crossref] [PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

Gallagher, T. F.

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Gärttner, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Gauguet, A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Gibble, K.

V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
[Crossref] [PubMed]

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Gould, P. L.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Gross, M.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

Günter, G.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Haroche, S.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

He, B.

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Hemmer, P. R.

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).

Henage, T.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Hofferberth, S.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Hofmann, C. S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Huber, B.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Isenhower, L.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Jia, S.

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Johnson, T. A.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Jones, M. P. A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Kölle, A.

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Krishnan, S.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Kübler, H.

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Kuzmich, A.

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336(6083), 887–889 (2012).
[Crossref] [PubMed]

Lesanovsky, I.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Li, C.

Li, C. B.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Li, P.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Li, W. H.

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Liang, Q. Y.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Löw, R.

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Lukin, M. D.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

Marangos, J. P.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Marcassa, L. G.

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

Martin, J. D. D.

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

Matsko, A. B.

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

Maxwell, D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Molmer, K.

M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Mourachko, I.

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

Müller, M.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Nie, Z.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Noel, M. W.

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Otterbach, J.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
[Crossref] [PubMed]

Ovsiannikov, V. D.

V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
[Crossref] [PubMed]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Petrosyan, D.

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
[Crossref] [PubMed]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Pfau, T.

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Pillet, P.

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Pohl, T.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Pritchard, J. D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

Raimond, J. M.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

Reetz-Lamour, M.

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

Robert-de-Saint-Vincent, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Robinson, M. P.

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Saffman, M.

M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Schempp, H.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Schlagmüller, M.

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

Scully, M. O.

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

Sharypov, A. V.

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Sheng, J.

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Simon, C.

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Singer, K.

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

Stanojevic, J.

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Stoicheff, B. P.

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

Thompson, D. C.

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

Tian, Y. L.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Tolra, B. L.

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Tong, D.

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Urban, E.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Vitrant, G.

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

Vuletic, V.

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Walker, T. G.

M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
[Crossref]

Wang, X. X.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Weatherill, K. J.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

Weidemüller, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

Weimer, H.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Weinberger, E.

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

Whitlock, S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

Xiao, M.

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Xu, G.

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

Yang, Y.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Yavuz, D. D.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Yuan, C.

Zhang, L.

Zhang, Y.

H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
[PubMed]

H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
[PubMed]

H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
[PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Zhang, Y. P.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

Zhang, Y. Z.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Zhang, Z.

Zhang, Z. Y.

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Zhao, J.

Zhao, Y.

Zheng, H.

H. Zheng, Y. Zhao, C. Yuan, Z. Zhang, J. Che, Y. Zhang, Y. Zhang, and Y. Zhang, “Dressed multi-wave mixing process with Rydberg blockade,” Opt. Express 21(10), 11728–11746 (2013).
[PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Zoller, P.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

Adv. At., Mol., Opt. Phys. (1)

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347–386 (2000).

J. Phys. At. Mol. Opt. Phys. (1)

K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys. 38(2), S295–S307 (2005).
[Crossref]

J. Phys. B (1)

G. Vitrant, J. M. Raimond, M. Gross, and S. Haroche, “Rydberg to plasma evolution in a dense gaz of very excited atoms,” J. Phys. B 15(2), L49–L55 (1982).
[Crossref]

Laser Phys. Lett. (1)

J. L. Che, Z. Y. Zhang, C. B. Li, Y. L. Tian, Y. Z. Zhang, X. X. Wang, and Y. P. Zhang, “Polarized dressing suppression and enhancement involving Rydberg in a thermal vapor cell,” Laser Phys. Lett. 12(2), 025403 (2015).
[Crossref]

Nat. Phys. (1)

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009).
[Crossref]

Nature (1)

T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488(7409), 57–60 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (7)

A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A 85(6), 063821 (2012).
[Crossref]

E. Brekke, J. O. Day, and T. G. Walker, “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A 78(6), 063830 (2008).
[Crossref]

D. C. Thompson, E. Weinberger, G. Xu, and B. P. Stoicheff, “Frequency shifts and line broadenings in collisions between Rydberg and ground-state alkali-metal atoms,” Phys. Rev. A 35(2), 690–700 (1987).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

W. H. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,” Phys. Rev. A 67(5), 052502 (2003).
[Crossref]

J. D. Carter and J. D. D. Martin, “Coherent manipulation of cold Rydberg atoms near the surface of an atom chip,” Phys. Rev. A 88(4), 043429 (2013).
[Crossref]

Phys. Rev. Lett. (15)

M. P. Robinson, B. L. Tolra, M. W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85(21), 4466–4469 (2000).
[Crossref] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett. 107(24), 243001 (2011).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999).
[Crossref]

V. D. Ovsiannikov, A. Derevianko, and K. Gibble, “Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks,” Phys. Rev. Lett. 107(9), 093003 (2011).
[Crossref] [PubMed]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93(6), 063001 (2004).
[Crossref] [PubMed]

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, “Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms,” Phys. Rev. Lett. 93(16), 163001 (2004).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107(21), 213601 (2011).
[Crossref] [PubMed]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009).
[Crossref] [PubMed]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105(19), 193603 (2010).
[Crossref] [PubMed]

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110(20), 203601 (2013).
[Crossref] [PubMed]

B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, “Two-photon dynamics in coherent Rydberg atomic ensemble,” Phys. Rev. Lett. 112(13), 133606 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Saffman, T. G. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82(3), 2313–2363 (2010).
[Crossref]

Science (1)

Y. O. Dudin and A. Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336(6083), 887–889 (2012).
[Crossref] [PubMed]

Other (1)

T. F. Gallagher, Rydberg Atoms (Cambridge University, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental setup. L-lens, D-photodetectors, SAS-saturated absorption spectrum, TA-tapered amplifier, FP-Fabry Perot cavity, FD-frequency doubler, DL-external cavity diode laser, HW-half wave plate at corresponding wavelength, PBS-polarized beam splitter at corresponding wavelength, OI-optical isolator. Double-headed arrows and filled dots denote horizontal polarization and vertical polarization of incident beams, respectively. (b) A five-level atomic system in 85Rb vapor. (c) Model for realizing Rydberg excitation blockade. |2〉 is the Rydberg state level; the ellipse background represents a region within which only one atom can be excited to the Rydberg state; the top big ball represents the single Rydberg atom, while the small balls represent atoms in lower levels; ε2ε is the shifted level energy.
Fig. 2
Fig. 2 (a)~(c) Intensity evolutions of EIT, fluorescence and corresponding Rydberg EWM signals by scanning Δ2 with increased Δ4. The single peak in (a), dip in (b) and peak in (c) are the intensities of the EIT, fluorescence and MWM signals, respectively. The dashed lines in Fig. 2 (a) and Fig. 2(b) are the EIT and fluorescence profiles of E4 field with the probe detuning Δ1 scanned. The upper dashed line profile is consisted of the peaks of Rydberg SWM1&EWM signals. The lower dashed line is the profile of a single non-Rydberg SWM2 peak with the probe detuning Δ1 scanned. (a1)~(c1) are the theoretical curves corresponding to (a)~(c), respectively. Level |2〉 is 37D. N0 = 2.4 × 1012 cm−3, G1 = 2π × 54 MHz, G2 = 2π × 7.6 MHz, G3 = 2π × 350 MHz, G′3 = 2π × 150 MHz, G4 = 2π × 600 MHz.
Fig. 3
Fig. 3 (a), (b) and (c) are the E4 power dependences of the intensities of EWM, EIT and corresponding fluorescence signals versus Δ2, respectively. The squares represent the original experimental observations and the solid curves are the theoretical predictions. (a1) (b1) and (c1) represent the observed lineshapes of EWM, EIT and fluorescence signals, respectively. (a2), (b2) and (c2) are the theoretical lineshapes corresponding to (a1), (b1) and (c1), respectively. The parameters are N0 = 2.4 × 1012 cm−3, G1 = 2π × 54 MHz, G2 = 2π × 5.4 MHz at 100mW, G3 = 2π × 350 MHz, G′3 = 2π × 150 MHz, and G4 = 2π × 600 MHz at 35mW.
Fig. 4
Fig. 4 (a), (b) and (c) are the E2 power dependences of the intensities of EIT, fluorescence and EWM signals versus Δ2, respectively. (d) is the atom temperature (atomic density) dependences of the EWM intensity versus Δ2. The squares and dots represent the original experimental observations for 37D and 45D, and the solid curves are corresponding theoretical predictions. (e3) represent the observed lineshape of pure EWM signal (the difference between mixed MWM in (e1) and pure SWM1 in (e2)). Corresponding parameters are G1 = 2π × 54 MHz, G2 = 2π × 5.4 MHz, G3 = 2π × 350 MHz, G′3 = 2π × 150 MHz, G′4 = 2π × 200 MHz, and N0 = 2.4 × 1012 cm−3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε(r)= N 2 V U(r r ) d 3 r ,
N 2 =C N 1 0.2 ( | G 2 |/ n 11 ) 0.4 ,
N 1 = 1 2 N 0 ( G 1 2 / Re[ d 1 +| G 2 | 2 / d 2 +| G 4 | 2 / d 4 ] + G 3 2 / Re[ d 3 ] ),
ρ 10DDD (1) =i| G 1 | 0.2 /[ d 1 + (| G 2 |/ n 11 ) 0.4 / d 2 + | G 3 | 2 / d 3 + | G 4 | 2 / d 4 ].
ρ 11DD (2) =| G 1 | 0.4 /[ Γ 11 ( d 1 + G 2 0.4 / n 4.4 d 2 +| G 3 | 2 / d 3 )+| G 4 | 2 / d 4 )]
P (7) = + i N 0 0.2 μ 10 C| G 1 | 0.4 (| G 2 |/ n 11 ) 0.4 | G 3 | 2 | G 4 | 2 [ d 1 +| G 1 | 0.4 / Γ 00 + (| G 2 |/ n 11 ) 0.4 / d 2 +| G 4 | 2 / d 4 ] 3 d 2 d 30 d 4 N(v)dv.

Metrics