Abstract

Monolithic, crystalline and highly oriented coordination network compound (CNC) Prussian blue (PB) thin films have been deposited though different routes on conductive substrates. Characterization of the monolithic thin films reveals a long-term stability, even after many redox cycles the crystallinity as well as the high orientation remain intact during the electrochromic switching process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices

Cheng-Chung Jaing, Chien-Jen Tang, Chih-Chao Chan, Kun-Hsien Lee, Chien-Cheng Kuo, Hsi-Chao Chen, and Cheng-Chung Lee
Appl. Opt. 53(4) A154-A158 (2014)

Focus Issue: Thin-Film Photovoltaic Materials and Devices

Bernard Kippelen
Opt. Express 18(S3) A487-A488 (2010)

Electrochromic LixWO3/polymer laminate/LiyV2O5 device: toward an all-solid-state smart window

A. M. Andersson, Claes G. Granqvist, and J. R. Stevens
Appl. Opt. 28(16) 3295-3302 (1989)

References

  • View by:
  • |
  • |
  • |

  1. H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
    [Crossref]
  2. G. Férey and C. Serre, “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38(5), 1380–1399 (2009).
    [Crossref] [PubMed]
  3. O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
    [Crossref]
  4. O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
    [Crossref] [PubMed]
  5. S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
    [Crossref]
  6. S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
    [Crossref]
  7. E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
    [Crossref]
  8. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
    [Crossref] [PubMed]
  9. F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials,” Opt. Laser Technol. 38(4-6), 292–305 (2006).
    [Crossref]
  10. V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).
  11. V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
    [Crossref] [PubMed]
  12. C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
    [Crossref] [PubMed]
  13. X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
    [Crossref] [PubMed]
  14. A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
    [Crossref] [PubMed]
  15. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
    [Crossref] [PubMed]
  16. P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
    [Crossref] [PubMed]
  17. C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
    [Crossref]
  18. K. Itaya and I. Uchida, “Nature of intervalence charge-transfer bands in Prussian blues,” Inorg. Chem. 25(3), 389–392 (1986).
    [Crossref]
  19. B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
    [Crossref] [PubMed]
  20. S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
    [Crossref] [PubMed]
  21. H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
    [Crossref]
  22. G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14(6), 357–361 (1981).
    [Crossref]
  23. G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminium and wolfram,” Acta Metall. 1(1), 22–31 (1953).
    [Crossref]
  24. A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
    [Crossref]
  25. A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
    [Crossref]
  26. H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
    [Crossref]

2014 (7)

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
[Crossref] [PubMed]

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

2013 (3)

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

2012 (3)

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

2011 (2)

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

2009 (1)

G. Férey and C. Serre, “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38(5), 1380–1399 (2009).
[Crossref] [PubMed]

2006 (1)

F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials,” Opt. Laser Technol. 38(4-6), 292–305 (2006).
[Crossref]

2003 (1)

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

2002 (1)

B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
[Crossref] [PubMed]

1999 (1)

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

1994 (1)

A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
[Crossref]

1992 (1)

V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).

1986 (1)

K. Itaya and I. Uchida, “Nature of intervalence charge-transfer bands in Prussian blues,” Inorg. Chem. 25(3), 389–392 (1986).
[Crossref]

1981 (1)

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14(6), 357–361 (1981).
[Crossref]

1977 (1)

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

1953 (1)

G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminium and wolfram,” Acta Metall. 1(1), 22–31 (1953).
[Crossref]

Allendorf, M. D.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
[Crossref] [PubMed]

Alvarez-Perez, A.

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Arslan, H. K.

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Baklanov, M. R.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Barnes, J. C.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Bohannan, E. W.

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

Botero-Cadavid, J. F.

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

Bowden, M. E.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Brunschwig, B. S.

B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
[Crossref] [PubMed]

Buck, M.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Bundschuh, S.

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

Bury, W.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Buser, H. J.

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

Carpi, F.

F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials,” Opt. Laser Technol. 38(4-6), 292–305 (2006).
[Crossref]

Castro, K.

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Centrone, A.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Chen, R.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Chen, X.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Christensen, P. A.

A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
[Crossref]

Creutz, C.

B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
[Crossref] [PubMed]

Dang, L.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

De Rossi, D.

F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials,” Opt. Laser Technol. 38(4-6), 292–305 (2006).
[Crossref]

Djilali, N.

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

Doherty, C. M.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Dragässer, A.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Dunbar, K. R.

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

Eddaoudi, M.

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

El Gabaly, F.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Esconjauregui, S.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Eslava, S.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Fairen-Jimenez, D.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Falcaro, P.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Farha, O. K.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Férey, G.

G. Férey and C. Serre, “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38(5), 1380–1399 (2009).
[Crossref] [PubMed]

Fernandez, C. A.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Fischer, R. A.

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

Ford, A. C.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Foster, M. E.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Franzreb, M.

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Gardner, D. M.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Gliemann, H.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

Hall, W. H.

G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminium and wolfram,” Acta Metall. 1(1), 22–31 (1953).
[Crossref]

Hamnett, A.

A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
[Crossref]

Haney, P.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Higgins, S. J.

A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
[Crossref]

Hill, A. J.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Huang, W.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Hupp, J. T.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Itaya, K.

K. Itaya and I. Uchida, “Nature of intervalence charge-transfer bands in Prussian blues,” Inorg. Chem. 25(3), 389–392 (1986).
[Crossref]

Khorami, H. A.

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

Kinney, R. A.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Klingsporn, J. M.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Kothari, H. M.

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

Kraft, O.

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

Kung, C. W.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Lai, W.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Léonard, F.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Li, H.

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

Liang, K.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Liu, J.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

Liu, J. X.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

Liu, X.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Lu, G.

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

Ludi, A.

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

Madariaga, J. M.

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Mao, J. G.

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

Martin, P. C.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

McGrail, B. P.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Mondloch, J. E.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Munichandraiah, N.

V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).

Nakanishi, S.

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

O’Keeffe, M.

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

Pawley, G. S.

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14(6), 357–361 (1981).
[Crossref]

Petter, W.

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

Pitarch, A.

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Queralt, I.

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Rao, L. K.

V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).

Redel, E.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

Ricco, R.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Saiz, E.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Schaef, T.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Schlettwein, D.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Schwarzenbach, D.

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

Serre, C.

G. Férey and C. Serre, “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38(5), 1380–1399 (2009).
[Crossref] [PubMed]

Shekhah, O.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Shen, C.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Stavila, V.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
[Crossref] [PubMed]

Stoddart, J. F.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Styles, M. J.

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

Su, Q.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Sun, Q.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Sutin, N.

B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
[Crossref] [PubMed]

Switzer, J. A.

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

Szalai, V.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Talin, A. A.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
[Crossref] [PubMed]

Thallapally, P. K.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Uchida, I.

K. Itaya and I. Uchida, “Nature of intervalence charge-transfer bands in Prussian blues,” Inorg. Chem. 25(3), 389–392 (1986).
[Crossref]

Van Duyne, R.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Vanstreels, K.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Vinni, V.

V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).

Walheim, S.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

Wang, T. C.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Wang, Z. B.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

Wasielewski, M. R.

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

Weidler, P. G.

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

Wild, P.

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

Williamson, G. K.

G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminium and wolfram,” Acta Metall. 1(1), 22–31 (1953).
[Crossref]

Wohlgemuth, J.

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Wöll, C.

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Wöll, Ch.

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

Xu, H.

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

Xu, W.

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Yaghi, O. M.

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

Yang, J. W.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Yoon, H. P.

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Zhang, L. P.

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Zhang, X.

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

Zhang, Z.

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

Zhao, H.

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

Zybaylo, O.

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Acta Metall. (1)

G. K. Williamson and W. H. Hall, “X-ray line broadening from field aluminium and wolfram,” Acta Metall. 1(1), 22–31 (1953).
[Crossref]

Adv. Funct. Mater. (1)

H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer, and C. Wöll, “High-throughput fabrication of uniform and homogenous MOF coatings,” Adv. Funct. Mater. 21(22), 4228–4231 (2011).
[Crossref]

Analyst (Lond.) (1)

A. Hamnett, P. A. Christensen, and S. J. Higgins, “Analysis of electrogenerated films by ellipsometry and infrared spectrometry,” Analyst (Lond.) 119(5), 735–747 (1994).
[Crossref]

Appl. Phys. Lett. (2)

S. Bundschuh, O. Kraft, H. K. Arslan, H. Gliemann, P. G. Weidler, and C. Wöll, “Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films,” Appl. Phys. Lett. 101(10), 101910 (2012).
[Crossref]

E. Redel, Z. B. Wang, S. Walheim, J. X. Liu, H. Gliemann, and C. Wöll, “On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films,” Appl. Phys. Lett. 103(9), 091903 (2013).
[Crossref]

Chem. Commun. (Camb.) (2)

X. Zhang, Z. Zhang, H. Zhao, J. G. Mao, and K. R. Dunbar, “A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states,” Chem. Commun. (Camb.) 50(12), 1429–1431 (2014).
[Crossref] [PubMed]

A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll, and D. Schlettwein, “Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy,” Chem. Commun. (Camb.) 48(5), 663–665 (2012).
[Crossref] [PubMed]

Chem. Mater. (2)

C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, and J. T. Hupp, “Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism,” Chem. Mater. 25(24), 5012–5017 (2013).
[Crossref]

S. Eslava, L. P. Zhang, S. Esconjauregui, J. W. Yang, K. Vanstreels, M. R. Baklanov, and E. Saiz, “Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronics,” Chem. Mater. 25(1), 27–33 (2013).
[Crossref]

Chem. Soc. Rev. (6)

G. Férey and C. Serre, “Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences,” Chem. Soc. Rev. 38(5), 1380–1399 (2009).
[Crossref] [PubMed]

H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, “Recent progress in metal-organic complexes for optoelectronic applications,” Chem. Soc. Rev. 43(10), 3259–3302 (2014).
[Crossref] [PubMed]

O. Shekhah, J. Liu, R. A. Fischer, and Ch. Wöll, “MOF thin films: existing and future applications,” Chem. Soc. Rev. 40(2), 1081–1106 (2011).
[Crossref] [PubMed]

P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hill, and M. J. Styles, “MOF positioning technology and device fabrication,” Chem. Soc. Rev. 43(16), 5513–5560 (2014).
[Crossref] [PubMed]

V. Stavila, A. A. Talin, and M. D. Allendorf, “MOF-based electronic and opto-electronic devices,” Chem. Soc. Rev. 43(16), 5994–6010 (2014).
[Crossref] [PubMed]

B. S. Brunschwig, C. Creutz, and N. Sutin, “Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime,” Chem. Soc. Rev. 31(3), 168–184 (2002).
[Crossref] [PubMed]

Electrochim. Acta (1)

H. A. Khorami, J. F. Botero-Cadavid, P. Wild, and N. Djilali, “Spectroscopic detection of hydrogen peroxide with an optical fiber probe using chemically deposited Prussion blue,” Electrochim. Acta 115(1), 416–424 (2014).
[Crossref]

Inorg. Chem. (2)

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussion Blue: Fe4[Fe(CN)6]·×H2O,” Inorg. Chem. 16(11), 2704–2710 (1977).
[Crossref]

K. Itaya and I. Uchida, “Nature of intervalence charge-transfer bands in Prussian blues,” Inorg. Chem. 25(3), 389–392 (1986).
[Crossref]

J. Am. Chem. Soc. (1)

S. Nakanishi, G. Lu, H. M. Kothari, E. W. Bohannan, and J. A. Switzer, “Epitaxial electrodeposition of Prussian blue thin films on single-crystal Au(110),” J. Am. Chem. Soc. 125(49), 14998–14999 (2003).
[Crossref] [PubMed]

J. Appl. Cryst. (1)

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14(6), 357–361 (1981).
[Crossref]

J. Raman Spectrosc. (1)

A. Pitarch, A. Alvarez-Perez, K. Castro, J. M. Madariaga, and I. Queralt, “Raman analysis assessed by Fourier-Transformed infrared and X-ray flouresence spectroscopies: a multi-analytical approach of ancient chromolithographs from the 19th century,” J. Raman Spectrosc. 43(3), 411–418 (2012).
[Crossref]

Nature (1)

O. M. Yaghi, H. Li, M. Eddaoudi, and M. O’Keeffe, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402(6759), 276–279 (1999).
[Crossref]

Opt. Laser Technol. (1)

F. Carpi and D. De Rossi, “Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials,” Opt. Laser Technol. 38(4-6), 292–305 (2006).
[Crossref]

Proc. SPIE (1)

V. Vinni, L. K. Rao, and N. Munichandraiah, “High contrast optical switching in electrochromic Prussian blue films for display/window applications,” Proc. SPIE 1622, 278–282 (1992).

Sci. Rep. (1)

C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, and B. P. McGrail, “An electrically switchable metal-organic framework,” Sci. Rep. 4, 6114 (2014).
[Crossref] [PubMed]

Science (1)

A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, and M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science 343(6166), 66–69 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) UV-Vis spectra of the spin-coated 5 layers PB thin film during EC switching in the oxidized and reduced state; (b) Picture of EC Cell composed out of ITO-PB/KCl-Pt/ITO for the oxidized (upside) and reduced (downside) PB smart window; (c) Cyclic voltammetry (CV) of the spin-coated 1 layer PB thin film on ITO substrate (the scan rate is 100 mV/s); (d) the waveform of the Pulsed Amperometric Detection (PAD) at the applied potential of Eox = 0.1 V and Ere = –0.4 V (downside), and the corresponding current density (upside) for the reversible electrochromic devices during the switching; (e-f) the zoomed-in area in (d), corresponding to one segment of the PAD at the applied potential of Ere = –0.4 V (e) and Eox = 0.1 V (f). (g) UV-Vis absorbance (at 694 nm) of the spin-coated 1 layer PB thin film during EC switching for 10 cycles by using Pulsed Amperometric Detection method at the applied potential Eox = 0.1 V and Ere = –0.4 V.

Fig. 2
Fig. 2

(a) A schematic representation of the electrochemical cell for electrochromic experiment. The cell is made of Teflon material, which is sandwiched between counter electrode (CE) and working electrode (WE), the two electrodes are sealed with a silicone O-ring on both sides of the cell. A platinum wire is inserted on the top of the cell which working as reference electrode (RE). (b) Schematic representation of the electrochemical cell for full-oxidation and thereafter half-reduction of the PB thin film; by using which, an interface between oxidation and reduction state of the PB could be developed to do 2D Raman study.

Fig. 3
Fig. 3

(a) XRD of Prussian blue thin film (black) deposited on modified Au substrate; (b) XRD of Prussian blue thin film (black) deposited on ITO substrate (blue) and the powder (grey); (c) XRD of the (002) peak of the oxidated (black) and reduced (red) Prussian blue thin film deposited on ITO; (d) Williamson-Hall plots of the (00l) peak-series of oxidated (full symbol, l = 2,4,6,8) and for the reduced sample (open symbol, l = 2,4,6).

Fig. 4
Fig. 4

IR (a) and Raman (b) spectra of the oxidized and reduced state of spin-coated 3 layers PB thin film on MHDA modified Au substrate; (c) 2D Raman-MAP of the PB thin film, showing the interface of reduced and oxidized state of the film, the inner area shows the integration result of the CN-band between 2132 and 2108 cm−1.

Fig. 5
Fig. 5

(a) HR-SEM image of 50 cycles of sprayed PB thin films on MHDA modified Au substrate, and (b) spin-coated 3 layers PB thin film on MHDA modified Au substrate.

Metrics