Abstract

Effects of the polarization on subtracted images in fluorescence emission difference microscopy are numerically investigated based on vector beam diffraction theory and alteration of Jones matrices. Parameters of resolution, signal loss, and amplitude of negative sidebands after subtraction are discussed along with the polarization of excitation beams and sample sizes. The effects of polarization on the ellipticity and subtraction threshold are also given.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical calibration of the spatial overlap for subtraction microscopy

Nan Wang and Takayoshi Kobayashi
Opt. Express 23(10) 13410-13422 (2015)

Numerical study of the subtraction threshold for fluorescence difference microscopy

Nan Wang and Takayoshi Kobayashi
Opt. Express 22(23) 28819-28830 (2014)

Fluorescence emission difference with surface plasmon-coupled emission applied in confocal microscopy

Kang Jiang, Xinrui Lei, Kuanguo Li, Yonghua Lu, and Pei Wang
Opt. Express 26(3) 2380-2389 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microscopy 198, 82–87 (2000).
    [Crossref]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  4. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
    [Crossref]
  5. M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
    [Crossref]
  6. A. Sharonov and R. M. Hochstrasser, “Wide-field sub-diffraction imaging by accumulated binding of diffusing probes,” P. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006).
    [Crossref]
  7. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
    [Crossref]
  8. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
    [Crossref]
  9. J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
    [Crossref] [PubMed]
  10. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [Crossref] [PubMed]
  11. C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref]
  12. H. Dehez, M. Piche, and Y. D. Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21(13), 15912–15925 (2013).
    [Crossref] [PubMed]
  13. S. Segawa, Y. Kozawa, and S. Sato, “Resolution enhancement of confocal microscopy by subtraction method with vector beams,” Opt. Lett. 39(11), 3118–3121 (2014).
    [Crossref] [PubMed]
  14. N. Wang, J. Miyazaki, J. He, K. Seto, and T. Kobayashi, “Sub-diffraction-limit imaging using mode multiplexing,” Opt. Commun. 343, 28–33 (2015).
    [Crossref]
  15. S. Segawa, Y. Kozawa, and S. Sato, “Demonstration of subtraction imaging in confocal microscopy with vector beams,” Opt. Lett. 39(15), 4529–4532 (2014).
    [Crossref] [PubMed]
  16. S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
    [Crossref] [PubMed]
  17. N. Wang and T. Kobayashi, “Numerical study of the subtraction threshold for fluorescence difference microscopy,” Opt. Express 22(23), 28819–28830 (2014).
    [Crossref] [PubMed]
  18. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
    [Crossref]
  19. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50(7), B6–B11 (2011).
    [Crossref] [PubMed]
  20. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maxi-mize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
    [Crossref] [PubMed]
  21. Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).
  22. N. Wang and T. Kobayashi, “Numerical calibration of the spatial overlap for subtraction microscopy,” Opt. Express 23(10), 13410–13422 (2015).
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
    [Crossref]
  24. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
    [Crossref] [PubMed]
  25. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [Crossref] [PubMed]
  26. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31(7), 488–493 (1941).
    [Crossref]
  27. W. H. Mcmaster, “Matrix representation of polarization,” Rev. Mod. Phys. 33(1), 8–28 (1961).
    [Crossref]
  28. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [Crossref] [PubMed]

2015 (3)

N. Wang, J. Miyazaki, J. He, K. Seto, and T. Kobayashi, “Sub-diffraction-limit imaging using mode multiplexing,” Opt. Commun. 343, 28–33 (2015).
[Crossref]

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

N. Wang and T. Kobayashi, “Numerical calibration of the spatial overlap for subtraction microscopy,” Opt. Express 23(10), 13410–13422 (2015).

2014 (6)

2013 (2)

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

H. Dehez, M. Piche, and Y. D. Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21(13), 15912–15925 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

2009 (1)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

2008 (1)

2007 (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

2006 (3)

A. Sharonov and R. M. Hochstrasser, “Wide-field sub-diffraction imaging by accumulated binding of diffusing probes,” P. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

2004 (1)

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
[Crossref]

2003 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microscopy 198, 82–87 (2000).
[Crossref]

1996 (1)

1994 (1)

1961 (1)

W. H. Mcmaster, “Matrix representation of polarization,” Rev. Mod. Phys. 33(1), 8–28 (1961).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

1941 (1)

Bates, M.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Benfenati, F.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bianchini, P.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

Clayton, A. H.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Dehez, H.

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Diaspro, A.

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Galiani, S.

Gan, X.

Ganic, D.

Ge, J. H.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Gordon, M. P.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
[Crossref]

Gu, M.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[Crossref] [PubMed]

Gu, Z. T.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microscopy 198, 82–87 (2000).
[Crossref]

Ha, T.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
[Crossref]

Hao, X.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Harke, B.

Hayashi-Takagi, A.

He, J.

N. Wang, J. Miyazaki, J. He, K. Seto, and T. Kobayashi, “Sub-diffraction-limit imaging using mode multiplexing,” Opt. Commun. 343, 28–33 (2015).
[Crossref]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Hochstrasser, R. M.

A. Sharonov and R. M. Hochstrasser, “Wide-field sub-diffraction imaging by accumulated binding of diffusing probes,” P. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006).
[Crossref]

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Jones, R. C.

Kasai, H.

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Kobayashi, T.

Koninck, Y. D.

Kozawa, Y.

Kuang, C.

S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
[Crossref] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Kuang, C. F.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Lerman, G. M.

Levy, U.

Li, C.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

Li, H. F.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Li, S.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Lignani, G.

Lin, H.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Liu, W.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Liu, X.

S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
[Crossref] [PubMed]

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Ludford-Menting, M. J.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

Ma, J.

Mcmaster, W. H.

W. H. Mcmaster, “Matrix representation of polarization,” Rev. Mod. Phys. 33(1), 8–28 (1961).
[Crossref]

Miyazaki, J.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Osten, W.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Pedrini, G.

Piche, M.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Rong, Z.

Russell, S. M.

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Sato, S.

Schadt, M.

Schwartz, J. L.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Segawa, S.

Selvin, P. R.

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
[Crossref]

Seto, K.

N. Wang, J. Miyazaki, J. He, K. Seto, and T. Kobayashi, “Sub-diffraction-limit imaging using mode multiplexing,” Opt. Commun. 343, 28–33 (2015).
[Crossref]

Sharonov, A.

A. Sharonov and R. M. Hochstrasser, “Wide-field sub-diffraction imaging by accumulated binding of diffusing probes,” P. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006).
[Crossref]

Situ, G.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stalder, M.

Tsurui, H.

Vicidomini, G.

Wang, L.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

Wang, N.

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

Wang, Y. F.

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Wichmann, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Yao, J.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

You, S.

Yuan, C.

Zhang, C.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

Zhuang, X. W.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Appl. Opt. (1)

Histochem Cell Biol. (1)

Y. Chen, H. Lin, M. J. Ludford-Menting, A. H. Clayton, M. Gu, and S. M. Russell, “Polarization of excitation light influences molecule counting in single-molecule localization microscopy”, Histochem Cell Biol. 143(1), 11–19 (2015).

J. Microscopy (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microscopy 198, 82–87 (2000).
[Crossref]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Meth. (1)

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Opt. Commun. (1)

N. Wang, J. Miyazaki, J. He, K. Seto, and T. Kobayashi, “Sub-diffraction-limit imaging using mode multiplexing,” Opt. Commun. 343, 28–33 (2015).
[Crossref]

Opt. Express (8)

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[Crossref] [PubMed]

G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
[Crossref] [PubMed]

S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
[Crossref] [PubMed]

N. Wang and T. Kobayashi, “Numerical study of the subtraction threshold for fluorescence difference microscopy,” Opt. Express 22(23), 28819–28830 (2014).
[Crossref] [PubMed]

N. Wang and T. Kobayashi, “Numerical calibration of the spatial overlap for subtraction microscopy,” Opt. Express 23(10), 13410–13422 (2015).

S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maxi-mize the performance of a STED microscope,” Opt. Express 20(7), 7362–7374 (2012).
[Crossref] [PubMed]

H. Dehez, M. Piche, and Y. D. Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21(13), 15912–15925 (2013).
[Crossref] [PubMed]

J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

P. Natl. Acad. Sci. USA (3)

M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” P. Natl. Acad. Sci. USA 101(17), 6462–6465 (2004).
[Crossref]

A. Sharonov and R. M. Hochstrasser, “Wide-field sub-diffraction imaging by accumulated binding of diffusing probes,” P. Natl. Acad. Sci. USA 103(50), 18911–18916 (2006).
[Crossref]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” P. Natl. Acad. Sci. USA 106(52), 22287–22292 (2009).
[Crossref]

Phys. Rev. Lett. (2)

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112, 014302 (2014).
[Crossref] [PubMed]

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Proc. R. Soc. Lond. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Rev. Mod. Phys. (1)

W. H. Mcmaster, “Matrix representation of polarization,” Rev. Mod. Phys. 33(1), 8–28 (1961).
[Crossref]

Sci. Rep. (1)

C. F. Kuang, S. Li, W. Liu, X. Hao, Z. T. Gu, Y. F. Wang, J. H. Ge, H. F. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of polarization conversion for excitation beams in subtraction microscopy. (b) Two groups of polarization combinations for excitation. (c) Electric field components with rotated wave plate. (d) Electric field components with fixed wave plate. PBS: polarization beam splitter; WP: wave plate; Obj: objective lens; QWP: quarter wave plate; MHWP: mosaic half wave plate.
Fig. 2
Fig. 2 (a) Convoluted solid and donut fluorescence images with different rotation angles of the QWP. The sample has size of r = 0.1λ. (b) Subtracted images with factors of γ=0.3, 0.6, 1.0 for θr = −90°, −67.5°, −45°. (c)–(e) FWHM values of sectioning profiles along the long and short axes, and ellipticity with different subtraction factors of γ=0, 0.3, 0.6, 1.0 versus different rotation angles (θr).
Fig. 3
Fig. 3 (a) Peak intensity and (c) Negative sidebands versus rotation angles of QWP with subtraction factors of γ=0, 0.3, 0.6, 1.0. (b) Peak intensity and (d) Negative sidebands versus subtraction factors with rotation angles of θr = −35°, −45°, −55°. (e) Subtraction threshold line. (f) Threshold peak intensity curves.
Fig. 4
Fig. 4 Simulation results with radial and azimuthal polarization. (a) Excitation spots versus different angles of wave plate. (b) Subtracted images with factors of 0.3, 0.6 and 1.0 for the rotation angles of −22.5°, 0°, 22.5°.

Tables (1)

Tables Icon

Table 1 Parameter sets for IS and ID.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I R A W ( x , y , z , θ r , r , γ ) = I S ( x , y , z , θ r ) * O b ( x , y , r ) γ · I D ( x , y , z , θ r ) * O b ( x , y , r ) I ( x , y , z , θ r , r , γ ) = { I R A W ( x , y , z , θ r , r , γ ) I R A W ( x , y , z , θ r , r , γ ) 0 0 I R A W ( x , y , z , θ r , r , γ ) < 0
E x , y , z ( x , y , z , θ r ) = i C λ 0 2 π 0 arcsin ( N A / n ) A A M P A P h a s e A L [ P x ( θ r ) P y ( θ r ) P z ( θ r ) ] sin θ e i k { z cos θ + x 2 + y 2 sin θ cos [ φ arctan ( y / x ) ] } d θ d φ
I S , D ( x , y , z , θ r ) = | E x | 2 + | E y | 2 + | E z | 2
O b ( x , y , r ) = C 0 e ( 4 ln 2 ) x 2 + y 2 r 2
A L = cos θ [ 1 + ( cos θ 1 ) cos 2 φ ( cos θ 1 ) cos φ sin φ sin θ cos φ ( cos θ 1 ) cos φ sin φ 1 + ( cos θ 1 ) sin 2 φ sin θ sin φ sin θ cos φ sin θ sin φ cos θ ]
s p : [ P x P y P z ] = [ ( 1 i ) sin θ r cos θ r cos 2 θ r + i sin 2 θ r 0 ] , p p : [ P x P y P z ] = [ sin 2 θ r + i cos 2 θ r ( 1 i ) sin θ r cos θ r 0 ]
s p : [ P x P y P z ] = [ i sin θ r cos θ r 0 ] , p p : [ P x P y P z ] = [ cos θ r i sin θ r 0 ]
s p : [ P x P y P z ] = [ cos ( φ θ r ) sin ( φ θ r ) 0 ] , p p : [ P x P y P z ] = [ sin ( φ θ r ) cos ( φ θ r ) 0 ]
I p e a k = M A X [ I ( x , y , z , θ r , r , γ ) ] M A X [ I ( x , y , z , θ r , r , 0 ) ]
| I N e g | = { 0 M I N [ I R A W ( x , y , z , θ r , r , γ ) ] 0 | M I N [ I R A W ( x , y , z , θ r , r , γ ) ] | M A X [ I ( x , y , z , θ r , r , γ ) ] M I N [ I R A W ( x , y , z , θ r , r , γ ) ] < 0
F W H M O b ( x , y , r 0 ) = F W H M I ( x , y , z , θ r , r 0 , γ 0 )
I P = M A X [ I ( x , y , z , θ r , r 0 , γ ) ] M A X [ I ( x , y , z , θ r , r 0 , 0 ) ]

Metrics