Abstract

We introduce a new strategy for single-mode fiber based polarization-sensitive (PS-) optical coherence tomography (OCT) using orthogonally polarized optical frequency combs (OFC) in the sample arm. The two OFCs are tuned to be interleaved in the spectral domain, permitting simultaneous measurement of both polarization states from the same spatial region C close to the location of zero pathlength delay. The two polarization states of the beam in the sample arm are demultiplexed by interpolation after performing wavelength stabilization via a two-mirror calibration method. The system uses Jones matrix methods to measure quantitatively the round-trip phase retardation B-scans in the sample. A glass plate and quarter-wave plate were measured to validate the accuracy of the birefringence measurement. Further, we demonstrated the potential of this system for biomedical applications by measurement of chicken breast muscle.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interleaved optical coherence tomography

Hee Yoon Lee, Helge Sudkamp, Tahereh Marvdashti, and Audrey K. Ellerbee
Opt. Express 21(22) 26542-26556 (2013)

Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit

Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto
Opt. Express 20(9) 10229-10241 (2012)

Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method

Masahiro Yamanari, Shuichi Makita, Violeta Dimitrova Madjarova, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 14(14) 6502-6515 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [Crossref]
  2. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
    [Crossref] [PubMed]
  3. J. de Boer, Polarization Sensitive Optical Coherence Tomography (Springer, 2013).
  4. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 94–102 (2004).
    [Crossref] [PubMed]
  5. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
    [Crossref] [PubMed]
  6. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
    [Crossref] [PubMed]
  7. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
    [Crossref] [PubMed]
  8. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
    [Crossref]
  9. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
    [Crossref] [PubMed]
  10. M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
    [Crossref] [PubMed]
  11. L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, “Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3717–3729 (2014).
    [Crossref] [PubMed]
  12. R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
    [Crossref]
  13. Y. Chen, L. Otis, D. Piao, and Q. Zhu, “Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system,” Appl. Opt. 44, 2041–2048 (2005).
    [Crossref] [PubMed]
  14. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
    [Crossref] [PubMed]
  15. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
    [Crossref] [PubMed]
  16. X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39, 5066–5069 (2014).
    [Crossref] [PubMed]
  17. F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3417–3426 (2014).
    [Crossref] [PubMed]
  18. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
    [Crossref] [PubMed]
  19. J. Zhang, S. Guo, W. Jung, J. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262–3270 (2003).
    [Crossref] [PubMed]
  20. D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775–1777 (2003).
    [Crossref] [PubMed]
  21. M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express 18, 3392–4033 (2010).
    [Crossref] [PubMed]
  22. K. L. Lurie, T. J. Moritz, and A. K. Ellerbee, “Design considerations for polarization-sensitive optical coherence tomography with a single input polarization state,” Biomed. Opt. Express 3, 2273–2287 (2012).
    [Crossref] [PubMed]
  23. T. Marvdashti, L. Duan, K. L. Lurie, G. T. Smith, and A. K. Ellerbee, “Quantitative measurements of strain and birefringence with common-path polarization-sensitive optical coherence tomography,” Opt. Lett. 39, 5507–5510 (2014).
    [Crossref] [PubMed]
  24. H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
    [Crossref] [PubMed]
  25. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17, 22704–22717 (2009).
    [Crossref]
  26. W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
    [Crossref] [PubMed]
  27. H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
    [Crossref]
  28. M. Pierce, M. Shishkov, B. Park, N. Nassif, B. Bouma, G. Tearney, and J. de Boer, “Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 13, 5739–5749 (2005).
    [Crossref] [PubMed]
  29. Z. Wang, H.-C. Lee, O. O. Ahsen, B. Lee, W. Choi, B. Potsaid, J. Liu, V. Jayaraman, A. Cable, M. F. Kraus, K. Liang, J. Hornegger, and J. G. Fujimoto, “Depth-encoded all-fiber swept source polarization sensitive OCT,” Biomed. Opt. Express 5, 2931–2949 (2014).
    [Crossref] [PubMed]
  30. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
    [Crossref] [PubMed]
  31. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
    [Crossref]
  32. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005).
    [Crossref] [PubMed]
  33. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
    [Crossref] [PubMed]
  34. N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
    [Crossref] [PubMed]
  35. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
    [Crossref] [PubMed]
  36. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012).
    [Crossref] [PubMed]
  37. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
    [Crossref] [PubMed]
  38. L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
    [Crossref] [PubMed]
  39. H. Y. Lee, T. Marvdashti, L. Duan, S. A. Khan, and A. K. Ellerbee, “Scalable multiplexing for parallel imaging with interleaved optical coherence tomography,” Biomed. Opt. Express 5, 3192–3203 (2014).
    [Crossref] [PubMed]
  40. H. Y. Lee, H. Sudkamp, T. Marvdashti, and A. K. Ellerbee, “Interleaved optical coherence tomography,” Opt. Express 21, 26542–26556 (2013).
    [Crossref] [PubMed]
  41. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 1981–1983 (2006).
    [Crossref]
  42. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [Crossref] [PubMed]
  43. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [Crossref] [PubMed]
  44. S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
    [Crossref] [PubMed]
  45. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
    [Crossref] [PubMed]
  46. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  47. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [Crossref] [PubMed]
  48. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref] [PubMed]

2014 (8)

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

Z. Wang, H.-C. Lee, O. O. Ahsen, B. Lee, W. Choi, B. Potsaid, J. Liu, V. Jayaraman, A. Cable, M. F. Kraus, K. Liang, J. Hornegger, and J. G. Fujimoto, “Depth-encoded all-fiber swept source polarization sensitive OCT,” Biomed. Opt. Express 5, 2931–2949 (2014).
[Crossref] [PubMed]

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39, 5066–5069 (2014).
[Crossref] [PubMed]

H. Y. Lee, T. Marvdashti, L. Duan, S. A. Khan, and A. K. Ellerbee, “Scalable multiplexing for parallel imaging with interleaved optical coherence tomography,” Biomed. Opt. Express 5, 3192–3203 (2014).
[Crossref] [PubMed]

F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3417–3426 (2014).
[Crossref] [PubMed]

T. Marvdashti, L. Duan, K. L. Lurie, G. T. Smith, and A. K. Ellerbee, “Quantitative measurements of strain and birefringence with common-path polarization-sensitive optical coherence tomography,” Opt. Lett. 39, 5507–5510 (2014).
[Crossref] [PubMed]

L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, “Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3717–3729 (2014).
[Crossref] [PubMed]

2013 (2)

H. Y. Lee, H. Sudkamp, T. Marvdashti, and A. K. Ellerbee, “Interleaved optical coherence tomography,” Opt. Express 21, 26542–26556 (2013).
[Crossref] [PubMed]

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (2)

2006 (3)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 1981–1983 (2006).
[Crossref]

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

2005 (6)

2004 (3)

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[Crossref] [PubMed]

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 94–102 (2004).
[Crossref] [PubMed]

2003 (6)

2002 (3)

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[Crossref] [PubMed]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
[Crossref]

2001 (2)

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

2000 (1)

1992 (1)

Adie, S. G.

Ahsen, O. O.

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Brezinski, M. E.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Cable, A.

Cahill, L.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Cense, B.

Chaney, E. J.

Chen, Y.

Chen, Z.

Choi, W.

Choma, M.

Courtney, B. K.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Darling, C. L.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

Davé, D. P.

de Boer, J.

De Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[Crossref] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[Crossref]

Duan, L.

H. Y. Lee, T. Marvdashti, L. Duan, S. A. Khan, and A. K. Ellerbee, “Scalable multiplexing for parallel imaging with interleaved optical coherence tomography,” Biomed. Opt. Express 5, 3192–3203 (2014).
[Crossref] [PubMed]

T. Marvdashti, L. Duan, K. L. Lurie, G. T. Smith, and A. K. Ellerbee, “Quantitative measurements of strain and birefringence with common-path polarization-sensitive optical coherence tomography,” Opt. Lett. 39, 5507–5510 (2014).
[Crossref] [PubMed]

L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, “Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3717–3729 (2014).
[Crossref] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[Crossref] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[Crossref] [PubMed]

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[Crossref] [PubMed]

Duker, J. S.

Ellerbee, A. K.

Evdokimova, O.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Fabritius, T.

Featherstone, J. D. B.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 94–102 (2004).
[Crossref] [PubMed]

Fried, D.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Fu, X.

Fujimoto, J. G.

Fukuda, S.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

Gelikonov, G.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Gelikonov, V.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Giattina, S. D.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Gladkova, N.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Goetzinger, E.

Götzinger, E.

Guo, S.

Haindl, R.

Harman, M.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Hee, M. R.

Herz, P. R.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Hong, Y.-J.

Hornegger, J.

Huang, D.

Huang, J.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

Huber, R.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 1981–1983 (2006).
[Crossref]

Hyle Park, B.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[Crossref] [PubMed]

Ishii, K.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

Izatt, J.

Jayaraman, V.

Jenkins, M. W.

Jiao, S.

Jones, R. S.

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

Jung, W.

Kao, M.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

Karabut, M.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Khan, S. A.

Kiseleva, E.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Kraus, M. F.

Kuo, W.-C.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

Lai, C.-M.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

Lam, S.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Lane, P.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Lee, A.

Lee, A. M. D.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Lee, B.

Lee, H. Y.

Lee, H.-C.

Leitgeb, R.

Liang, K.

Lim, Y.

Lin, H.

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

Liu, B.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Liu, J.

Lurie, K. L.

MacAulay, C.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Makita, S.

Marjanovic, M.

Marvdashti, T.

Milner, T. E.

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775–1777 (2003).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[Crossref] [PubMed]

Miura, M.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

Moritz, T. J.

Mujat, M.

Nassif, N.

Nelson, J.

Nelson, J. S.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[Crossref]

Oshika, T.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

Otis, L.

Pahlevaninezhad, H.

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

Park, B.

Park, B. H.

Piao, D.

Pierce, M.

Pierce, M. C.

Pircher, M.

Potsaid, B.

Rollins, A. M.

Sarunic, M.

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Saxer, C. E.

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Shishkov, M.

Shortkroff, S.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Smith, G. T.

South, F. A.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

Stamper, D. L.

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

Sticker, M.

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 94–102 (2004).
[Crossref] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[Crossref] [PubMed]

Stoica, G.

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[Crossref] [PubMed]

Streltsova, O.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Sudkamp, H.

Swanson, E. A.

Tang, J. Y.

Tearney, G.

Tearney, G. J.

Todorovic, M.

Torzicky, T.

Trasischker, W.

Vakoc, B.

Wang, H.

Wang, L.

Wang, L. V.

Wang, Y. T.

Wang, Z.

Wojtkowski, M.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 1981–1983 (2006).
[Crossref]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

Yamanari, M.

Yang, C.

Yasuno, Y.

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[Crossref] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[Crossref] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[Crossref] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

Yu, W.

Yun, S.

Yun, S.-H.

Yunusova, K.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Zagaynova, E.

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

Zhang, J.

Zhao, Y.

Zhu, Q.

Zotter, S.

Appl. Opt. (2)

Biomed. Opt. Express (6)

Z. Wang, H.-C. Lee, O. O. Ahsen, B. Lee, W. Choi, B. Potsaid, J. Liu, V. Jayaraman, A. Cable, M. F. Kraus, K. Liang, J. Hornegger, and J. G. Fujimoto, “Depth-encoded all-fiber swept source polarization sensitive OCT,” Biomed. Opt. Express 5, 2931–2949 (2014).
[Crossref] [PubMed]

W. Trasischker, S. Zotter, T. Torzicky, B. Baumann, R. Haindl, M. Pircher, and C. K. Hitzenberger, “Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer,” Biomed. Opt. Express 5, 2798–2809 (2014).
[Crossref] [PubMed]

F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3417–3426 (2014).
[Crossref] [PubMed]

K. L. Lurie, T. J. Moritz, and A. K. Ellerbee, “Design considerations for polarization-sensitive optical coherence tomography with a single input polarization state,” Biomed. Opt. Express 3, 2273–2287 (2012).
[Crossref] [PubMed]

L. Duan, T. Marvdashti, A. Lee, J. Y. Tang, and A. K. Ellerbee, “Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5, 3717–3729 (2014).
[Crossref] [PubMed]

H. Y. Lee, T. Marvdashti, L. Duan, S. A. Khan, and A. K. Ellerbee, “Scalable multiplexing for parallel imaging with interleaved optical coherence tomography,” Biomed. Opt. Express 5, 3192–3203 (2014).
[Crossref] [PubMed]

Int. J. Cardiol. (1)

S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, “Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT),” Int. J. Cardiol. 107, 400–409 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002).
[Crossref] [PubMed]

R. S. Jones, C. L. Darling, J. D. B. Featherstone, and D. Fried, “Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 11, 14016–14019 (2006).
[Crossref]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[Crossref] [PubMed]

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287–291 (2004).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 94–102 (2004).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).
[Crossref] [PubMed]

H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, and W.-C. Kuo, “All fiber optics circular-state swept source polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 21110 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

N. Gladkova, O. Streltsova, E. Zagaynova, E. Kiseleva, V. Gelikonov, G. Gelikonov, M. Karabut, K. Yunusova, and O. Evdokimova, “Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study,” J. Biophotonics 4, 519–532 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (18)

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[Crossref] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17, 22704–22717 (2009).
[Crossref]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[Crossref] [PubMed]

J. Zhang, S. Guo, W. Jung, J. Nelson, and Z. Chen, “Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers,” Opt. Express 11, 3262–3270 (2003).
[Crossref] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express 18, 3392–4033 (2010).
[Crossref] [PubMed]

M. Pierce, M. Shishkov, B. Park, N. Nassif, B. Bouma, G. Tearney, and J. de Boer, “Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography,” Opt. Express 13, 5739–5749 (2005).
[Crossref] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[Crossref] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012).
[Crossref] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[Crossref] [PubMed]

L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express 19, 16330–16345 (2011).
[Crossref] [PubMed]

H. Y. Lee, H. Sudkamp, T. Marvdashti, and A. K. Ellerbee, “Interleaved optical coherence tomography,” Opt. Express 21, 26542–26556 (2013).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 1981–1983 (2006).
[Crossref]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[Crossref] [PubMed]

Opt. Lett. (9)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[Crossref] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[Crossref] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[Crossref] [PubMed]

S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
[Crossref]

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28, 1775–1777 (2003).
[Crossref] [PubMed]

T. Marvdashti, L. Duan, K. L. Lurie, G. T. Smith, and A. K. Ellerbee, “Quantitative measurements of strain and birefringence with common-path polarization-sensitive optical coherence tomography,” Opt. Lett. 39, 5507–5510 (2014).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[Crossref]

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39, 5066–5069 (2014).
[Crossref] [PubMed]

Photon. (1)

H. Pahlevaninezhad, A. M. D. Lee, L. Cahill, S. Lam, C. MacAulay, and P. Lane, “Fiber-based polarization diversity detection for polarization-sensitive optical coherence tomography,” Photon. 1, 283–295 (2014).
[Crossref]

PLoS ONE (1)

M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical rheology of porcine sclera by birefringence imaging,” PLoS ONE 7, e44026 (2012).
[Crossref] [PubMed]

Other (1)

J. de Boer, Polarization Sensitive Optical Coherence Tomography (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the PS-iOCT system with orthogonally polarized optical frequency combs. FPE: Fabry-Perot etalon; PC: polarization controller; FPBS, fiber polarizing beam splitter; CIR: circulator; BS: non-polarizing beam splitter; PBS: polarizing beam splitter; G, galvanometers.

Fig. 2
Fig. 2

PS-iOCT data processing pipeline.

Fig. 3
Fig. 3

An example A-line signal showing the two peak signals generated by the calibration mirror. The red and blue dashed lines indicate roughly the filtering windows used to extract the interferograms for wavelength stabilization and spectral calibration.

Fig. 4
Fig. 4

(a) The optical comb signal from a single FPE; (b) zoom image of the segment from the red box in (a); (c) and (d) evolution of the comb in time without and with wavelength alignment and spectral calibration. The bottom right images show the zoom-in of yellow rectangles marked in areas (c) and (d).

Fig. 5
Fig. 5

(a) Demultiplexing of the two interferograms via resampling. (b) Extracting the peaks from the optical comb signal for a single channel yields the interferogram (red curve) for a single polarization state. Since we expect the optical comb represents a unique polarization state, we regard the red curve as signal and the blue one, obtained from the signal valleys, as cross-talk.

Fig. 6
Fig. 6

Round-trip retardation measurement of a glass plate and QWP. The optic axis of the QWP was rotated between measurements, showing the stability of the measurement.

Fig. 7
Fig. 7

Retardation measurement of glass and QWP.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S t , 1 R cos ( 2 k t ( t ) z m + φ t ( t ) ) , and
S t , 2 R cos ( 2 k t ( t ) ( z m + L ) + φ t ( t ) ) ,

Metrics