Abstract

A non-invasive optical technique, based on a supercontinuum laser source and hyperspectral sensors, is established to measure the spectral degree of linear polarization (DOLP) in a broad spectral range from 525 nm to 1000 nm. Several biomaterials of interest, such as healthy and cancerous skins, are considered. The spectral DOLP of melanoma, from 5 mm to 9 mm diameter, are measured and analyzed. An increase of the spectral DOLP is reported for 100% of the melanoma samples compared to healthy skin samples. The spectral DOLP of a given melanoma appears to be correlated to the stage of its development: the larger the melanoma, the higher the DOLP. Such trend could be explained by a decrease of the surface roughness along the evolution of the disease. In addition, a significant spectral dependence of the DOLP is reported for melanoma samples as it exhibits a decrease in the near infrared from 750 nm to 1000 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Differentiating melanoma and healthy tissues based on elasticity-specific Brillouin microspectroscopy

Maria Troyanova-Wood, Zhaokai Meng, and Vladislav V. Yakovlev
Biomed. Opt. Express 10(4) 1774-1781 (2019)

Spectral indexes obtained by implementation of the fractional Fourier and Hermite transform for the diagnosis of malignant melanoma

Esbanyely Garza-Flores, Esperanza Guerra-Rosas, and Josué Álvarez-Borrego
Biomed. Opt. Express 10(12) 6043-6056 (2019)

Fluorescence polarization imaging for delineating nonmelanoma skin cancers

A. N. Yaroslavsky, V. Neel, and R. R. Anderson
Opt. Lett. 29(17) 2010-2012 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Ann. Surg. 172(5), 902–908 (1970).
    [Crossref] [PubMed]
  2. B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
    [PubMed]
  3. W. K. Andersen and D. N. Silvers, “‘Melanoma? It can’t be melanoma!’ A subset of melanomas that defies clinical recognition,” JAMA, J. Am. Med. Assoc. 266(24), 3463–3465 (1991).
    [Crossref] [PubMed]
  4. L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).
  5. D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
    [Crossref] [PubMed]
  6. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
    [Crossref] [PubMed]
  7. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  8. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32(6), 689–691 (2007).
    [Crossref] [PubMed]
  9. H. D. Noble, S. C. McClain, and R. A. Chipman, “Mueller matrix roots depolarization parameters,” Appl. Opt. 51(6), 735–744 (2012).
    [Crossref] [PubMed]
  10. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [Crossref] [PubMed]
  11. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller Polarimetric Imaging System with Liquid Crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
    [Crossref] [PubMed]
  12. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46(15), 3038–3045 (2007).
    [Crossref] [PubMed]
  13. M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
    [Crossref] [PubMed]
  14. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [Crossref]
  15. P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12(19), 4366–4371 (2004).
    [Crossref] [PubMed]
  16. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  17. H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
    [Crossref] [PubMed]
  18. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  19. C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
    [Crossref] [PubMed]
  20. R. Ceolato, N. Riviere, and L. Hespel, “Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements,” Opt. Express 20(28), 29413–29425 (2012).
    [Crossref] [PubMed]
  21. R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
    [Crossref]
  22. A. Al-Qasimi, O. Korotkova, D. James, and E. Wolf, “Definitions of the degree of polarization of a light beam,” Opt. Lett. 32(9), 1015–1016 (2007).
    [Crossref] [PubMed]
  23. D. A. Haner, B. T. McGuckin, and C. J. Bruegge, “Polarization Characteristics of Spectralon Illuminated by Coherent Light,” Appl. Opt. 38(30), 6350–6356 (1999).
    [Crossref] [PubMed]
  24. F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
    [Crossref]
  25. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]

2014 (3)

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

2009 (2)

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
[Crossref] [PubMed]

2007 (3)

2006 (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (2)

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

2004 (3)

1999 (2)

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

D. A. Haner, B. T. McGuckin, and C. J. Bruegge, “Polarization Characteristics of Spectralon Illuminated by Coherent Light,” Appl. Opt. 38(30), 6350–6356 (1999).
[Crossref] [PubMed]

1996 (1)

1991 (1)

W. K. Andersen and D. N. Silvers, “‘Melanoma? It can’t be melanoma!’ A subset of melanomas that defies clinical recognition,” JAMA, J. Am. Med. Assoc. 266(24), 3463–3465 (1991).
[Crossref] [PubMed]

1970 (2)

A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Ann. Surg. 172(5), 902–908 (1970).
[Crossref] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Akbari, H.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Al-Qasimi, A.

Andersen, W. K.

W. K. Andersen and D. N. Silvers, “‘Melanoma? It can’t be melanoma!’ A subset of melanomas that defies clinical recognition,” JAMA, J. Am. Med. Assoc. 266(24), 3463–3465 (1991).
[Crossref] [PubMed]

Antonelli, M.-R.

Benali, A.

Bhatia, A. C.

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

Boulbry, B.

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Boulvert, F.

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Breslow, A.

A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Ann. Surg. 172(5), 902–908 (1970).
[Crossref] [PubMed]

Brodell, R. T.

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

Bruegge, C. J.

Brun, G. Le

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Cariou, J.

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Cemazar, M.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Ceolato, R.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

R. Ceolato, N. Riviere, and L. Hespel, “Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements,” Opt. Express 20(28), 29413–29425 (2012).
[Crossref] [PubMed]

Champert, P.-A.

Chen, G. Z.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Chen, Z.

Chipman, R. A.

Chung, J.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

De Martino, A.

Ding, Y.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Drévillon, B.

Ducommun, B.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ellwood, R.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Février, S.

Froehly, C.

Gareau, D. S.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Gayet, B.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Golzio, M.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Guyot, S.

Halig, L. V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Hammer-Wilson, M. J.

Haner, D. A.

Hazen, B. P.

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

Hespel, L.

Hojman, P.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

James, D.

Jeune, B. L.

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Jiang, H.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Jorand, R.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

Jung, W.

Korotkova, O.

Kranjc, S.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Kulesz-Martin, M.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Labonté, L.

Lagowski, J.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Laude-Boulesteix, B.

Lee, K.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

Leproux, P.

Li, L.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Lorenzo, C.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Lu, S. Y.

Master, V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

McClain, S. C.

McGuckin, B. T.

Merlino, G.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Mesojednik, S.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Nérin, P.

Nieh, P. T.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Noble, H. D.

Novikova, T.

Ossikovski, R.

Osunkoya, A.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Pierangelo, A.

Prahl, S. A.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

Pretty, I.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
[Crossref] [PubMed]

Ramella-Roman, J. C.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

Rivet, S.

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

Riviere, N.

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

R. Ceolato, N. Riviere, and L. Hespel, “Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements,” Opt. Express 20(28), 29413–29425 (2012).
[Crossref] [PubMed]

Rols, M. P.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Rossi, V. M.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Roy, P.

Schuster, D. M.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Schwartz, L.

Sersa, G.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Silvers, D. N.

W. K. Andersen and D. N. Silvers, “‘Melanoma? It can’t be melanoma!’ A subset of melanomas that defies clinical recognition,” JAMA, J. Am. Med. Assoc. 266(24), 3463–3465 (1991).
[Crossref] [PubMed]

Teissie, J.

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

Thier, H. B. H.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Tombelaine, V.

Validire, P.

Viator, J. A.

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

Wang, J. Z.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Wilder-Smith, P.

Wolf, E.

Zaim, T.

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

Zakian, C.

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
[Crossref] [PubMed]

Zhang, Q.

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Ann. Surg. (1)

A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Ann. Surg. 172(5), 902–908 (1970).
[Crossref] [PubMed]

Appl. Opt. (4)

BMC Med. Imaging (1)

L. Li, Q. Zhang, Y. Ding, H. Jiang, H. B. H. Thier, and J. Z. Wang, “Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system,” BMC Med. Imaging 14(36) 101186 (2014).

Dermatol. Online J. (1)

B. P. Hazen, A. C. Bhatia, T. Zaim, and R. T. Brodell, “The clinical diagnosis of early malignant melanoma: expansion of the ABCD criteria to improve diagnostic sensitivity,” Dermatol. Online J. 5(2), 3 (1999).
[PubMed]

Gene Ther. (1)

M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, and J. Teissie, “Control by pulse parameters of DNA electrotransfer into solid tumors in mice,” Gene Ther. 16(5), 635–644 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

C. Zakian, I. Pretty, and R. Ellwood, “Near-infrared hyperspectral imaging of teeth for dental caries detection,” J. Biomed. Opt. 14(6), 064047 (2009).
[Crossref] [PubMed]

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

J. Investig. Dermatol. Symp. Proc. (1)

D. S. Gareau, J. Lagowski, V. M. Rossi, J. A. Viator, G. Merlino, M. Kulesz-Martin, and S. L. Jacques, “Imaging Melanoma in a Murine Model Using Reflectance-Mode Confocal Scanning Laser Microscopy and Polarized Light Imaging,” J. Investig. Dermatol. Symp. Proc. 10(2), 164–169 (2005).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

F. Boulvert, B. Boulbry, G. Le Brun, B. L. Jeune, S. Rivet, and J. Cariou, “Analysis of the depolarizing properties of irradiated pig skin,” J. Opt. A, Pure Appl. Opt. 7(1), 21–28 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

R. Ceolato, N. Riviere, R. Jorand, B. Ducommun, and C. Lorenzo, “Light-scattering by aggregates of tumor cells: Spectral, polarimetric, and angular measurements,” J. Quant. Spectrosc. Radiat. Transf. 146, 207–213 (2014).
[Crossref]

JAMA, J. Am. Med. Assoc. (1)

W. K. Andersen and D. N. Silvers, “‘Melanoma? It can’t be melanoma!’ A subset of melanomas that defies clinical recognition,” JAMA, J. Am. Med. Assoc. 266(24), 3463–3465 (1991).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 A via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photographs of B16F10 melanoma with 5 to 9 mm diameter from female C57Bl/6 mice. Photographs a) and b) display in-vivo melanoma before sacrifice and photograph c) displays ex-vivo photograph after sacrifice.
Fig. 2
Fig. 2 Schematic of a supercontinuum laser-based instrument to measure spectral degree of linear polarization of samples.
Fig. 3
Fig. 3 Spectral DOLP measured from spectral and polarimetric backscattered radiance of healthy skin samples from three different skin samples from three different female C57Bl/6 mice.
Fig. 4
Fig. 4 Spectral DOLP of a) healthy skin (averaged over three different female C57Bl/6 mice) and cancerous skin with B16F10 melanoma areas respectively of b) 23 mm2, c) 26 mm2, d) 58 mm2, and e) 68 mm2 (from four different female C57Bl/6 mice).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DOLP( λ ) = | I p ( λ ) I s ( λ ) | I p ( λ ) + I s ( λ )

Metrics