Abstract

We experimentally demonstrated supercontinuum generation through a hollow core photonic bandgap fiber (HC-PBGF) filled with DNA nanocrystals modified by copper ions in a solution. Both double-crossover nano DNA structure and copper-ion-modified structure provided a sufficiently high optical nonlinearity within a short length of hollow optical fiber. Adding a higher concentration of copper ion into the DNA nanocrystals, the bandwidth of supercontinuum output was monotonically increased. Finally, we achieved the bandwidth expansion of about 1000 nm to be sufficient for broadband multi-spectrum applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber

Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Kebin Shi, Zhiwen Liu, Stuart (Shizhuo) Yin, Karl Reichard, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo
Opt. Express 16(19) 14792-14800 (2008)

Broadband IR supercontinuum generation using single crystal sapphire fibers

Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Stuart (Shizhuo) Yin, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo
Opt. Express 16(6) 4085-4093 (2008)

Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response

R. Vasantha Jayakantha Raja, Anton Husakou, Joachim Hermann, and K. Porsezian
J. Opt. Soc. Am. B 27(9) 1763-1768 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  3. S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
    [Crossref]
  4. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
    [Crossref] [PubMed]
  5. K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
    [Crossref]
  6. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
    [Crossref]
  7. A. Ivanov, M. V. Alfimov, A. B. Fedotov, A. Podshivalov, D. Chorvat, and A. M. Zheltikov, “All-solid-state sub-40-fs self-starting Cr4+: forsterite laser with holey-fiber beam delivery and chirp control for coherence-domain and nonlinear-optical biomedical applications,” in Saratov Fall Meeting 2000, (International Society for Optics and Photonics, (2001)), 473–480 (2001).
  8. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref] [PubMed]
  9. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
    [Crossref]
  10. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [Crossref] [PubMed]
  11. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
    [Crossref]
  12. A. Bozolan, C. J. de Matos, C. M. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [Crossref] [PubMed]
  13. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20(7), 8148–8154 (2012).
    [Crossref] [PubMed]
  14. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
    [Crossref]
  15. B. Park, D. S. Reddy, M. A. Seo, T. Lee, S. C. Jun, S. Lee, S. H. Park, F. Rotermund, J. H. Kim, and C. Kim, “Four-wave mixing in copper ion modified-DNA nanostructure in solution”, presented at the optoelectronics and communication conference and Australian conference on optical fibre technology, Melbourne, Australia, (2014).
  16. P. Markowicz, M. Samoc, J. Cerne, P. Prasad, A. Pucci, and G. Ruggeri, “Modified Z-scan techniques for investigations of nonlinear chiroptical effects,” Opt. Express 12(21), 5209–5214 (2004).
    [Crossref] [PubMed]
  17. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
    [Crossref] [PubMed]
  18. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, and S. B. Lee, “Control of hollow-core photonic bandgap fiber ellipticity by induced lateral tension,” Opt. Express 17(3), 1268–1273 (2009).
    [Crossref] [PubMed]
  19. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
    [Crossref] [PubMed]
  20. J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
    [Crossref] [PubMed]
  21. M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
    [Crossref]
  22. E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
    [Crossref] [PubMed]

2013 (1)

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

2012 (1)

2011 (1)

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (2)

2007 (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

2006 (4)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]

E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

2002 (1)

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[Crossref]

2001 (1)

2000 (1)

1998 (1)

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

1993 (1)

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[Crossref]

Aggarwal, I. D.

Auguste, J.-L.

Barkou, S. E.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Birks, T. A.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Bjarklev, A.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Blondy, J. M.

Botek, E.

E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
[Crossref] [PubMed]

Bozolan, A.

Brantley, C.

Broeng, J.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Castet, F.

E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
[Crossref] [PubMed]

Cerne, J.

Champagne, B.

E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
[Crossref] [PubMed]

Chen, M.-K.

Cheong, S.-W.

Chinaud, J.

Cho, T.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cordeiro, C. M.

de Matos, C. J.

Delaye, P.

Dos Santos, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Edwards, E.

Février, S.

Frey, R.

Fujimoto, J. G.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghanta, R. K.

Govindaraju, M.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Grote, J. G.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

Han, Y.-G.

Hartl, I.

Hwang, H. Y.

Hwang, K.

Katsufuji, T.

Kieu, K.

Kim, G.

Kim, J.

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Kim, J. H.

Kim, S.

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Knight, J. C.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Ko, T. H.

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Lee, C. W.

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Lee, J.

Lee, K.

Lee, K. S.

Lee, S. B.

Lenz, G.

Li, P.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[Crossref] [PubMed]

Li, X. D.

Lines, M. E.

Liu, Z.

Luo, C.

Markowicz, P.

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[Crossref]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[Crossref]

Nam, S. H.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Norwood, R. A.

Park, S. H.

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Peyghambarian, N.

Prasad, P.

Pucci, A.

Rajamma, A.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Ranka, J. K.

Rao, K.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Reichard, K.

Roh, Y.

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Roosen, G.

Rouvie, A.

Roy, P.

Ruffin, P.

Ruggeri, G.

Russell, P. S. J.

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Sambasiva Rao, K.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Samoc, A.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

Samoc, M.

Sanders, S.

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[Crossref]

Sanghera, J. S.

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[Crossref]

Sateesha, S.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Schneebeli, L.

Shekar, H.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Shi, K.

Slusher, R. E.

Spälter, S.

Travers, J.

Vasudeva Raju, P.

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Viale, P.

Windeler, R. S.

Yang, C.-E.

Yin, S.

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[Crossref] [PubMed]

Yin, S. S.

Yiou, S.

Zimmermann, J.

Angew. Chem. Int. Ed. Engl. (1)

J. Lee, S. Kim, J. Kim, C. W. Lee, Y. Roh, and S. H. Park, “Coverage control of DNA crystals grown by silica assistance,” Angew. Chem. Int. Ed. Engl. 50(39), 9145–9149 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002).
[Crossref]

Appl. Phys. Lett. (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated liquid core waveguides for nonlinear optics,” Appl. Phys. Lett. 90(10), 101101 (2007).
[Crossref]

Chem. Phys. Lett. (1)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431(1-3), 132–134 (2006).
[Crossref]

Chemistry (1)

E. Botek, F. Castet, and B. Champagne, “Theoretical Investigation of the Second-Order Nonlinear Optical Properties of Helical Pyridine-Pyrimidine Oligomers,” Chemistry 12(34), 8687–8695 (2006).
[Crossref] [PubMed]

Electron. Lett. (1)

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[Crossref]

J. Pharm. Anal. (1)

M. Govindaraju, H. Shekar, S. Sateesha, P. Vasudeva Raju, K. Sambasiva Rao, K. Rao, and A. Rajamma, “Copper interactions with DNA of chromatin and its role in neurodegenerative disorders,” J. Pharm. Anal. 3(5), 354–359 (2013).
[Crossref]

Opt. Commun. (2)

K. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[Crossref]

J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156(4-6), 240–244 (1998).
[Crossref]

Opt. Express (8)

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[Crossref] [PubMed]

A. Bozolan, C. J. de Matos, C. M. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[Crossref] [PubMed]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20(7), 8148–8154 (2012).
[Crossref] [PubMed]

P. Markowicz, M. Samoc, J. Cerne, P. Prasad, A. Pucci, and G. Ruggeri, “Modified Z-scan techniques for investigations of nonlinear chiroptical effects,” Opt. Express 12(21), 5209–5214 (2004).
[Crossref] [PubMed]

J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express 16(19), 14792–14800 (2008).
[Crossref] [PubMed]

G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, and S. B. Lee, “Control of hollow-core photonic bandgap fiber ellipticity by induced lateral tension,” Opt. Express 17(3), 1268–1273 (2009).
[Crossref] [PubMed]

G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
[Crossref] [PubMed]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[Crossref] [PubMed]

Opt. Lett. (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (2)

A. Ivanov, M. V. Alfimov, A. B. Fedotov, A. Podshivalov, D. Chorvat, and A. M. Zheltikov, “All-solid-state sub-40-fs self-starting Cr4+: forsterite laser with holey-fiber beam delivery and chirp control for coherence-domain and nonlinear-optical biomedical applications,” in Saratov Fall Meeting 2000, (International Society for Optics and Photonics, (2001)), 473–480 (2001).

B. Park, D. S. Reddy, M. A. Seo, T. Lee, S. C. Jun, S. Lee, S. H. Park, F. Rotermund, J. H. Kim, and C. Kim, “Four-wave mixing in copper ion modified-DNA nanostructure in solution”, presented at the optoelectronics and communication conference and Australian conference on optical fibre technology, Melbourne, Australia, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Method of sample injection and sequence of double-crossover DNA.

Fig. 2
Fig. 2

Experimental setup for supercontinuum generation in hollow core photonic bandgap fiber (HC-PBGF). Inset image is HC-PBGF cross-section by differential interference contrast (DIC) microscopy.

Fig. 3
Fig. 3

Supercontinuum spectra generated in different types of HC-PBGF. Black, red, blue, and pink solid lines correspond to bare HC-PBGF, buffer filled HC-PBGF, DNA solution filled HC-PBGF, and copper-ion-modified-DNA filled HC-PBGF, respectively. The estimated peak power is about 109 GW/ cm2.

Fig. 4
Fig. 4

Experimental supercontinuum spectra generated in different concentration of copper ion. Black, red, blue and pink solid lines correspond to 2 mM, 4 mM, 6 mM and 8 mM different copper ion concentration in DNA solution, respectively. The peak power is 251 GW/cm2.

Fig. 5
Fig. 5

Experimental supercontinuum spectra generated in different length DNA with copper ion fiber under the pumping intensity of 109 GW/cm2. Black, red and blue lines correspond to 1 cm, 3 cm, and 5 cm long fibers, respectively.

Fig. 6
Fig. 6

Broadband supercontinuum spectrum through HC-PBGF filled with copper-ion-modified DNA.

Fig. 7
Fig. 7

Comparison of (a) experimental and (b) numerical results of nonlinear spectral broadening through the HC-PBGF with copper-ion-modified DNA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A+ i 2 β 2 2 A T 2 1 6 β 3 3A T 3 =iγ[ | A 2 |A+ i ω 0 T ( | A 2 |A T R A | A | 2 T ) ] ,
T R = tR(t)dt= f R t h R (t)dt= f R d( Im h ˜ R ) d( Δω ) | Δω=0 ,
L D = T 0 2 | β 2 | = | 2πc | T 0 2 | λ 2 D(λ) | ,
δ ω 0 = ω 0 c n 2 L I t ,

Metrics