Abstract

We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High energy transmission annular beam X-ray diffraction

Anthony Dicken, Alex Shevchuk, Keith Rogers, Simon Godber, and Paul Evans
Opt. Express 23(5) 6304-6312 (2015)

Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson
Opt. Express 25(18) 21321-21328 (2017)

X-ray diffraction tomography employing an annular beam

Paul Evans, Keith Rogers, Anthony Dicken, Simon Godber, and Danae Prokopiou
Opt. Express 22(10) 11930-11944 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
    [Crossref] [PubMed]
  2. G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
    [Crossref] [PubMed]
  3. G. Harding, “X-ray diffraction imaging-a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
    [Crossref] [PubMed]
  4. O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
    [Crossref] [PubMed]
  5. A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
    [Crossref]
  6. E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” in Proceedings of SPIE, Non-Intrusive Inspection Technologies II, 73100I (2009).
    [Crossref]
  7. D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).
  8. K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref] [PubMed]
  9. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  10. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
    [Crossref]
  11. A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
    [Crossref] [PubMed]
  12. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  13. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [Crossref] [PubMed]
  14. R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
    [Crossref]
  15. B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
    [Crossref]

2015 (1)

2014 (2)

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

2013 (2)

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

2012 (3)

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

2010 (3)

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

2009 (2)

G. Harding, “X-ray diffraction imaging-a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

1996 (1)

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

Barnes, P.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Beale, A. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Chan, J.

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Christodoulou, C.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Cook, E. J.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Desai, H.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Di Michiel, M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Dicken, A.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Duvauchelle, P.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Evans, P.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Fleckenstein, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Ghammraoui, B.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Gibson, E. K.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Godber, S.

Harding, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

G. Harding, “X-ray diffraction imaging-a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

Hills, D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Horrocks, J. A.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

Jacques, S.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Jacques, S. D. M.

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

Jones, J. L.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Kosciesza, D.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Lacey, R. J.

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

Lazzari, O.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Luggar, R. D.

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

O’Flynn, D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Olesinski, S.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Pani, S.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Paulus, C.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Prokopiou, D.

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Rebuffel, V.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Reid, C. B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Rogers, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Rogers, K.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Seller, P.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Shevchuk, A.

Sochi, T.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Speller, R.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Speller, R. D.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

Strecker, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Tabary, J.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Theedt, T.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Veale, M. C.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Verger, L.

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Wells, K.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Wilson, M. D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Wong, B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Zienert, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Analyst (Lond.) (1)

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging-a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Appl. Radiat. Isot. (5)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

G. Harding, “X-ray diffraction imaging-a multi-generational perspective,” Appl. Radiat. Isot. 67(2), 287–295 (2009).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

A. M. Beale, S. D. M. Jacques, E. K. Gibson, and M. Di Michiel, “Progress towards five dimensional diffraction imaging of functional materials under process conditions,” Coord. Chem. Rev. 277–278, 208–223 (2014).
[Crossref]

J. Appl. Cryst. (1)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

J. Instrum. (1)

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Nucl. Instrum. Methods Phys. Res., Sect. A (2)

R. D. Luggar, J. A. Horrocks, R. D. Speller, and R. J. Lacey, “Determination of the geometric blurring of an energy dispersive X-ray diffraction (EDXRD) system and its use in the simulation of experimentally derived diffraction profiles,” Nucl. Instrum. Methods Phys. Res., Sect. A 383(2-3), 610–618 (1996).
[Crossref]

B. Ghammraoui, V. Rebuffel, J. Tabary, C. Paulus, L. Verger, and P. Duvauchelle, “Effect of grain size on stability of X-ray diffraction patterns used for threat detection,” Nucl. Instrum. Methods Phys. Res., Sect. A 683, 1–7 (2012).
[Crossref]

Opt. Express (2)

Other (1)

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive X-ray diffraction,” in Proceedings of SPIE, Non-Intrusive Inspection Technologies II, 73100I (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic showing an annular beam incident normally upon an extended polycrystalline sample. The diffracted flux from the annular gauge volume, for a single d-spacing, is spread over a range of different X-ray energies (higher energy flux is represented in blue while the lower energy flux is represented in red). An energy resolving point detector is used to sample the resultant polychromatic focal spot.
Fig. 2
Fig. 2 Discretized representation of a continuum of polychromatic Debye rings produced by FCT for relatively small (a), intermediary (b), and large (c) d-spacing. These patterns occur in the detection plane normal to the annular beam symmetry axis and in practice are superimposed upon each other. At the center of each composite pattern is a high intensity focal spot (Bragg maxima), which may be sampled with an energy resolving point detector to produce an intensity against wavelength plot (d). Note that we employ the term polychromatic Debye ring to describe the spread in spectral energy (and annular width) for a single d-spacing over a finite spread in diffraction angle, Δ2θ . However, the ring component of each polychromatic Debye ring that contributes to the intensity of an incident focal spot has a fixed radius (e.g. approximately 32 mm for the FCT/sample configuration employed in our experiments).
Fig. 3
Fig. 3 X-ray diffraction patterns from various materials for 10, 1 and 0.5 seconds integration time, respectively. Counts per second have been time normalized with respect to the integration time. A Savitzky-Golay smoothing filter has been applied. The d-spacings are given in Å.
Fig. 4
Fig. 4 X-ray diffraction patterns from various materials for 10, 1 and 0.5 seconds integration time, respectively. Counts per second have been time normalized with respect to the integration time. A Savitzky-Golay smoothing filter has been applied. The expected position of the W-Kα (≈58 keV) scattering line(s) and W-Kβ (≈67 keV) lines are indicated by vertical dotted lines, respectively.
Fig. 5
Fig. 5 Plots showing the calculated spread in d-spacing, ∆d, in terms of the contributions from r = 1.7 mm in combination with; t = 5 mm, Δϕ = 3 .92 o ±0 .05 o , and ∆E = 850 eV . For example, the inner “error envelope” represents the contribution from the detector radius, r, alone, while the “outer error” envelope shows the compound effect of all the physical parameters r, t, Δϕ,ΔE . The vertical separation between corresponding plots (that define each error envelope) indicates the associated ∆d. The reference line (dotted) has a gradient of unity.
Fig. 6
Fig. 6 X-ray diffraction patterns from small (a), and large (b) grained sucrose for 10, 1 and 0.5 second integration times, respectively. A Savitzky-Golay smoothing filter has been applied. The d-spacings are given in Å.

Tables (3)

Tables Icon

Table 1 Material name, chemical formula, sample thickness, reference standard source and comments.

Tables Icon

Table 2 Calculated geometric broadening, Δ2θ , is tabulated in terms of different combinations of the primary beam divergence, detector radius and sample half-thickness. Note that a table entry of 0 selects ( ϕ max = ϕ min =3 .92 o , r = 0, t = 0 ), and a table entry of 1 selects ( ϕ max =3 .97 o , ϕ min =3 .87 o , r = 1.7 mm, t = 5 mm ), respectively.

Tables Icon

Table 3 Material name, true d-spacing, and calculated spread in d-spacing. The Δd values are highlighted by the horizontal bars in the corresponding diffractograms in Figs. 3 and 6.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 θ max = tan 1 [ ( Z+t )tan ϕ max +r LZt ]+ ϕ max .
2 θ min = tan 1 [ ( Zt )tan ϕ min r LZ+t ]+ ϕ min .
d= nλ 2sin( 1 2 ( tan 1 [ Ztanϕ LZ ]+ϕ ) ) .
λ max,min =2dsin( 2 θ max,min 2 ).
Δ e λ =( λ max λ D λ D λ max )( λ min λ D λ D + λ min ).
Δd= Δ e λ 2sinθ .

Metrics