Abstract

Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-stratum Resource Integration for OpenFlow-Based Data Center Interconnect [Invited]

Hui Yang, Yongli Zhao, Jie Zhang, Shouyu Wang, Wanyi Gu, Yuefeng Ji, Jianrui Han, Yi Lin, and Young Lee
J. Opt. Commun. Netw. 5(10) A240-A248 (2013)

Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect

Hui Yang, Jie Zhang, Yuefeng Ji, Rui Tian, Jianrui Han, and Young Lee
Opt. Express 23(24) 31192-31205 (2015)

Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks

Hui Yang, Yongqi He, Jie Zhang, Yuefeng Ji, Wei Bai, and Young Lee
Opt. Express 24(8) 8666-8678 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
    [Crossref]
  2. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
    [Crossref]
  3. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  4. M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
    [Crossref]
  5. T. Tanaka, A. Hirano, and M. Jinno, “Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects,” Opt. Express 22(1), 62–70 (2014).
    [Crossref] [PubMed]
  6. H. Yang, J. Zhang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection,” Opt. Express 22(15), 17630–17643 (2014).
    [Crossref] [PubMed]
  7. H. Yang, Y. Zhao, J. Zhang, S. Wang, W. Gu, Y. Ji, J. Han, Y. Lin, and Y. Lee, “Multi-stratum resource integration for OpenFlow-based data center interconnect [Invited],” J. Opt. Commun. Netw. 5(10), A240–A248 (2013).
    [Crossref]
  8. B. Guo, S. Huang, P. Luo, H. Huang, J. Zhang, and W. Gu, “Dynamic survivable mapping in IP over WDM network,” J. Lightwave Technol. 29(9), 1274–1284 (2011).
    [Crossref]
  9. S. Zhang, C. Martel, and B. Mukherjee, “Dynamic traffic grooming in elastic optical networks,” J. Sel. Areas Commun. 31(1), 4–12 (2013).
    [Crossref]
  10. S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
    [Crossref] [PubMed]
  11. K. Kumaki, ed., “Interworking requirements to support operation of MPLS-TE over GMPLS networks,” IETF RFC 5146 (2008). http://tools.ietf.org/html/rfc5146
  12. T. Szyrkowiec, A. Autenrieth, P. Gunning, P. Wright, A. Lord, J. P. Elbers, and A. Lumb, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration,” Opt. Express 22(3), 2595–2602 (2014).
    [Crossref] [PubMed]
  13. S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (Optical Society of America, 2012), paper Tu.1.D.1.
    [Crossref]
  14. L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, and S. J. B. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
    [Crossref] [PubMed]
  15. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
    [Crossref] [PubMed]
  16. F. Paolucci, F. Cugini, N. Hussain, F. Fresi, and L. Poti, “OpenFlow-based flexible optical networks with enhanced monitoring functionalities,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC 2012), (Optical Society of America, 2012), paper Tu.1.D.5.
    [Crossref]
  17. L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (Optical Society of America, 2012), paper Mo.2.D.3.
    [Crossref]
  18. R. Muñoz, R. Casellas, R. Martínez, and R. Vilalta, “Control plane solutions for dynamic and adaptive flexi-grid optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2013), (Optical Society of America, 2013), paper We.3.E.1.
  19. H. Yang, Y. Zhao, J. Zhang, J. Wu, J. Han, Y. Lin, Y. Lee, and Y. Ji, “Multi-stratum resilience with resources integration for software defined data center interconnection based on IP over elastic optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2014), (Optical Society of America, 2014), paper Tu.1.6.5.
    [Crossref]
  20. R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “Experimental assessment of GMPLS/PCE-controlled multi-flow optical transponders in flexgrid networks,” in Proceedings of Optical Fiber Communication Conference (OFC 2015), (Optical Society of America, 2015), paper Tu2B.4.
    [Crossref]

2014 (6)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, and S. J. B. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
[Crossref] [PubMed]

T. Tanaka, A. Hirano, and M. Jinno, “Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects,” Opt. Express 22(1), 62–70 (2014).
[Crossref] [PubMed]

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

T. Szyrkowiec, A. Autenrieth, P. Gunning, P. Wright, A. Lord, J. P. Elbers, and A. Lumb, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration,” Opt. Express 22(3), 2595–2602 (2014).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection,” Opt. Express 22(15), 17630–17643 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

2011 (1)

2008 (1)

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Al-Fares, M.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Amaya, N.

Autenrieth, A.

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Casellas, R.

Channegowda, M.

Elbers, J. P.

Gu, W.

Gunning, P.

Guo, B.

Han, J.

Hirano, A.

T. Tanaka, A. Hirano, and M. Jinno, “Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects,” Opt. Express 22(1), 62–70 (2014).
[Crossref] [PubMed]

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

Huang, H.

Huang, S.

Ji, Y.

Jinno, M.

T. Tanaka, A. Hirano, and M. Jinno, “Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects,” Opt. Express 22(1), 62–70 (2014).
[Crossref] [PubMed]

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Kaczmarek, P.

Kostecki, P.

Lee, Y.

Li, G.

Li, H.

Li, X.

Lin, Y.

Liu, L.

Lord, A.

Loukissas, A.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Lumb, A.

Luo, P.

Ma, T.

Martel, C.

S. Zhang, C. Martel, and B. Mukherjee, “Dynamic traffic grooming in elastic optical networks,” J. Sel. Areas Commun. 31(1), 4–12 (2013).
[Crossref]

Martínez, R.

Morita, I.

Mukherjee, B.

S. Zhang, C. Martel, and B. Mukherjee, “Dynamic traffic grooming in elastic optical networks,” J. Sel. Areas Commun. 31(1), 4–12 (2013).
[Crossref]

Muñoz, R.

Nejabati, R.

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Peng, S.

Peng, W. R.

Rashidi Fard, M.

Simeonidou, D.

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Sone, Y.

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

Szyrkowiec, T.

Takara, H.

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

Tanaka, T.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Tsuritani, T.

Vahdat, A.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Vilalta, R.

Wang, S.

Wright, P.

Yang, H.

Yonenaga, K.

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

Yoo, S. J. B.

Zervas, G.

Zhang, J.

Zhang, S.

S. Zhang, C. Martel, and B. Mukherjee, “Dynamic traffic grooming in elastic optical networks,” J. Sel. Areas Commun. 31(1), 4–12 (2013).
[Crossref]

Zhao, Y.

Comput. Commun. Rev. (1)

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag. 50(5), 56–65 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Sel. Areas Commun. (1)

S. Zhang, C. Martel, and B. Mukherjee, “Dynamic traffic grooming in elastic optical networks,” J. Sel. Areas Commun. 31(1), 4–12 (2013).
[Crossref]

Opt. Express (6)

S. Huang, B. Guo, X. Li, J. Zhang, Y. Zhao, and W. Gu, “Pre-configured polyhedron based protection against multi-link failures in optical mesh networks,” Opt. Express 22(3), 2386–2402 (2014).
[Crossref] [PubMed]

T. Tanaka, A. Hirano, and M. Jinno, “Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects,” Opt. Express 22(1), 62–70 (2014).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection,” Opt. Express 22(15), 17630–17643 (2014).
[Crossref] [PubMed]

T. Szyrkowiec, A. Autenrieth, P. Gunning, P. Wright, A. Lord, J. P. Elbers, and A. Lumb, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration,” Opt. Express 22(3), 2595–2602 (2014).
[Crossref] [PubMed]

L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, and S. J. B. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
[Crossref] [PubMed]

M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (7)

K. Kumaki, ed., “Interworking requirements to support operation of MPLS-TE over GMPLS networks,” IETF RFC 5146 (2008). http://tools.ietf.org/html/rfc5146

F. Paolucci, F. Cugini, N. Hussain, F. Fresi, and L. Poti, “OpenFlow-based flexible optical networks with enhanced monitoring functionalities,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC 2012), (Optical Society of America, 2012), paper Tu.1.D.5.
[Crossref]

L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (Optical Society of America, 2012), paper Mo.2.D.3.
[Crossref]

R. Muñoz, R. Casellas, R. Martínez, and R. Vilalta, “Control plane solutions for dynamic and adaptive flexi-grid optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2013), (Optical Society of America, 2013), paper We.3.E.1.

H. Yang, Y. Zhao, J. Zhang, J. Wu, J. Han, Y. Lin, Y. Lee, and Y. Ji, “Multi-stratum resilience with resources integration for software defined data center interconnection based on IP over elastic optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2014), (Optical Society of America, 2014), paper Tu.1.6.5.
[Crossref]

R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “Experimental assessment of GMPLS/PCE-controlled multi-flow optical transponders in flexgrid networks,” in Proceedings of Optical Fiber Communication Conference (OFC 2015), (Optical Society of America, 2015), paper Tu2B.4.
[Crossref]

S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (Optical Society of America, 2012), paper Tu.1.D.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The architecture of MSRIR for software defined inter-data center interconnect with IP over EON.
Fig. 2
Fig. 2 The functional models of IP, optical and application controllers.
Fig. 3
Fig. 3 Schematic diagram of different algorithms when edge optical switch node failure occurs: (a) traditional resilience algorithm in IP stratum, (b) global resources integrated resilience algorithm in both IP and optical stratums.
Fig. 4
Fig. 4 Illustration of auxiliary graph for GRIR algorithm: (a) auxiliary graph, (b) an example resilience path using auxiliary graph.
Fig. 5
Fig. 5 The interworking procedure of MSRIR for dynamic data center services when edge optical network node failure occurs.
Fig. 6
Fig. 6 Experimental testbed for MSRIR and demonstrator setup.
Fig. 7
Fig. 7 Wireshark capture of the message sequence for MSRIR in (a) OC and (b) IPC.
Fig. 8
Fig. 8 The backbone topology of continental US including 100 nodes and 171 links.
Fig. 9
Fig. 9 (a) Path blocking probability and (b) resource utilization among various algorithms under heavy traffic load scenario.
Fig. 10
Fig. 10 (a) Network cost and (b) path resilience latency among various algorithms under heavy traffic load scenario.

Tables (2)

Tables Icon

Table 1 Notations and Definitions

Tables Icon

Table 2 Algorithm 1: Global Resources Integrated Resilience Algorithm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W i,j I [ t|t= t 0 ]= k t= t c t 0 t c U j (t) f j (t) / t= t c t 0 t c f j (t) ,t[ t c t 0 , t c ]
b i,j s = k=1 m s b k / m s
W i,j O = μ v i,j / s=1 F b i,j s =μ v i,j s=1 F k=1 m s m s / b k

Metrics