Abstract

Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley’s reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase contrast soft x-ray microscopy using Zernike zone plates

Anne Sakdinawat and Yanwei Liu
Opt. Express 16(3) 1559-1564 (2008)

Diffracting aperture based differential phase contrast for scanning X-ray microscopy

Burkhard Kaulich, Francois Polack, Ulrich Neuhaeusler, Jean Susini, Enzo di Fabrizio, and Thomas Wilhein
Opt. Express 10(20) 1111-1117 (2002)

Phase contrast microscopy with full numerical aperture illumination

Christian Maurer, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 16(24) 19821-19829 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).
  2. H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
    [Crossref]
  3. G. R. Morrison and B. Niemann, “Differential Phase Contrast X-Ray Microscopy,” in X-Ray Microscopy and Spectromicroscopy (Springer Verlag, 1998).
    [Crossref]
  4. A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
    [Crossref]
  5. M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
    [Crossref]
  6. A. Siegel, G. Schmahl, and D. Rudolph, “Method and device for producing phase-contrast images,” US Patent4953188, August28, 1990
  7. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press1984).
  8. C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
    [Crossref]
  9. J. M. Cowley, “Image contrast in transmission scanning electron microscopy,” Appl. Phys. Lett. 15, 58–59 (1969).
    [Crossref]
  10. M. Born and E. Wolf, Principles of Optics, (7.) (Cambridge University Press, 1999), pp. 421–425.
  11. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
    [Crossref] [PubMed]
  12. I. Vartiainen, R. Mokso, M. Stampanoni, and C. David, “Halo suppression in full field X-ray Zernike phase contrast microscopy,” Opt. Lett. 39, 1601–1604 (2014).
    [Crossref] [PubMed]
  13. F. Zernike, “Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).
  14. Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
    [Crossref]
  15. T. Otaki, “Artifact Halo Reduction in Phase Contrast Microscopy Using Apodization,” Opt. Rev. 7, 119–122 (2000).
    [Crossref]
  16. S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
    [Crossref]
  17. B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
    [Crossref]
  18. D. S. Gorman and R. P. Levine, “Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965).
    [Crossref]
  19. E. S. Reynolds, “The use of lead citrate at high pH as an electron-opaque stain in electron microscopy,” J. Cell Biol. 17, 208–212 (1963).
    [Crossref] [PubMed]
  20. M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
    [Crossref]
  21. B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
    [Crossref]
  22. P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
    [Crossref]
  23. A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
    [Crossref] [PubMed]
  24. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 1175–1181 (2007).
    [Crossref] [PubMed]

2014 (2)

I. Vartiainen, R. Mokso, M. Stampanoni, and C. David, “Halo suppression in full field X-ray Zernike phase contrast microscopy,” Opt. Lett. 39, 1601–1604 (2014).
[Crossref] [PubMed]

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

2013 (1)

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

2011 (2)

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

2010 (3)

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

2009 (3)

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

2007 (1)

2000 (1)

T. Otaki, “Artifact Halo Reduction in Phase Contrast Microscopy Using Apodization,” Opt. Rev. 7, 119–122 (2000).
[Crossref]

1993 (1)

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

1988 (1)

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

1969 (1)

J. M. Cowley, “Image contrast in transmission scanning electron microscopy,” Appl. Phys. Lett. 15, 58–59 (1969).
[Crossref]

1965 (1)

D. S. Gorman and R. P. Levine, “Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965).
[Crossref]

1963 (1)

E. S. Reynolds, “The use of lead citrate at high pH as an electron-opaque stain in electron microscopy,” J. Cell Biol. 17, 208–212 (1963).
[Crossref] [PubMed]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref] [PubMed]

1935 (1)

F. Zernike, “Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

Ade, H.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Attwood, D.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Baines, S. B.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Barinov, A.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Barrett, R.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

Baumbach, T.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Beetz, T.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Bergamaschi, A.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, (7.) (Cambridge University Press, 1999), pp. 421–425.

Broennimann, C.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Bunk, O.

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 1175–1181 (2007).
[Crossref] [PubMed]

Chang, T. H. P.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Chapman, H. N.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Cheng, Y.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Cowley, J. M.

J. M. Cowley, “Image contrast in transmission scanning electron microscopy,” Appl. Phys. Lett. 15, 58–59 (1969).
[Crossref]

Cui, C.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

David, C.

I. Vartiainen, R. Mokso, M. Stampanoni, and C. David, “Halo suppression in full field X-ray Zernike phase contrast microscopy,” Opt. Lett. 39, 1601–1604 (2014).
[Crossref] [PubMed]

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 1175–1181 (2007).
[Crossref] [PubMed]

Davis, J.C.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Diaz, A.

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

Dierolf, M.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

Dinapoli, R.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Dudin, P.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Eikenberry, E. F.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Feng, S. C.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Feser, M.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Gianoncelli, A.

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

Gorelick, S.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Gorman, D. S.

D. S. Gorman and R. P. Levine, “Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965).
[Crossref]

Gregoratti, L.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Guizar-Sicairos, M.

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

Gullikson, E.M.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Guzenko, V. A.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

Heine, R.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Henke, B.L.

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Henrich, B.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Holton, J. M.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Holzner, C.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Hornberger, B.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Howells, M. R.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Iskander, N.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Jacobsen, C.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Jacobsen, C. J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Jefimovs, K.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Johnson, I.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Kaulich, B.

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

Kern, D. P.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Kewish, C. M.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

Kirz, J.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Kiskinova, M.

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Kobas, M.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Kottler, C.

Kraft, P.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Levine, R. P.

D. S. Gorman and R. P. Levine, “Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965).
[Crossref]

Lima, E.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Locatelli, A.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Marchesini, S.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Marone, F.

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

McNulty, I.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

McQuaid, K.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Mentes, T. O.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Menzel, A.

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

Miao, H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Mokso, R.

I. Vartiainen, R. Mokso, M. Stampanoni, and C. David, “Halo suppression in full field X-ray Zernike phase contrast microscopy,” Opt. Lett. 39, 1601–1604 (2014).
[Crossref] [PubMed]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Morrison, G. R.

G. R. Morrison and B. Niemann, “Differential Phase Contrast X-Ray Microscopy,” in X-Ray Microscopy and Spectromicroscopy (Springer Verlag, 1998).
[Crossref]

Mozzanica, A.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Niemann, B.

G. R. Morrison and B. Niemann, “Differential Phase Contrast X-Ray Microscopy,” in X-Ray Microscopy and Spectromicroscopy (Springer Verlag, 1998).
[Crossref]

Niño, M. Á.

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Otaki, T.

T. Otaki, “Artifact Halo Reduction in Phase Contrast Microscopy Using Apodization,” Opt. Rev. 7, 119–122 (2000).
[Crossref]

Pfeiffer, F.

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 1175–1181 (2007).
[Crossref] [PubMed]

Rarback, H.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Reynolds, E. S.

E. S. Reynolds, “The use of lead citrate at high pH as an electron-opaque stain in electron microscopy,” J. Cell Biol. 17, 208–212 (1963).
[Crossref] [PubMed]

Rothman, S.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Rudolph, D.

A. Siegel, G. Schmahl, and D. Rudolph, “Method and device for producing phase-contrast images,” US Patent4953188, August28, 1990

Salome, M.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

Sayre, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Schmahl, G.

A. Siegel, G. Schmahl, and D. Rudolph, “Method and device for producing phase-contrast images,” US Patent4953188, August28, 1990

Schmitt, B.

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Shapiro, D. A.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Sheppard, C.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press1984).

Shu, D.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Siegel, A.

A. Siegel, G. Schmahl, and D. Rudolph, “Method and device for producing phase-contrast images,” US Patent4953188, August28, 1990

Song, Y.-F.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Spence, J. C. H.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Stampanoni, M.

I. Vartiainen, R. Mokso, M. Stampanoni, and C. David, “Halo suppression in full field X-ray Zernike phase contrast microscopy,” Opt. Lett. 39, 1601–1604 (2014).
[Crossref] [PubMed]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Starodub, D.

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

Thibault, P.

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

Trtik, P.

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Vartiainen, I.

Vila-Comamala, J.

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Vladimirsky, Y.

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Vogt, S.

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Wang, C.-C.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Wilson, T.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press1984).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, (7.) (Cambridge University Press, 1999), pp. 421–425.

Yang, Y.

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref] [PubMed]

F. Zernike, “Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

Appl. Phys. Lett. (2)

J. M. Cowley, “Image contrast in transmission scanning electron microscopy,” Appl. Phys. Lett. 15, 58–59 (1969).
[Crossref]

Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys. Lett. 105, 094101 (2014).
[Crossref]

Atom. Data Nucl. Data Tables (1)

B.L. Henke, E.M. Gullikson, and J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1–92”, Atom. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Cem. Concr. Compos. (1)

P. Trtik, A. Diaz, M. Guizar-Sicairos, A. Menzel, and O. Bunk, “Density mapping of hardened cement paste using ptychographic X-ray computed tomography,” Cem. Concr. Compos. 36, 71–77 (2013).
[Crossref]

J. Cell Biol. (1)

E. S. Reynolds, “The use of lead citrate at high pH as an electron-opaque stain in electron microscopy,” J. Cell Biol. 17, 208–212 (1963).
[Crossref] [PubMed]

J. Electron Spectrosc. Rel. Phenom. (1)

M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. M. Holton, C. J. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. A. Shapiro, J. C. H. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy,” J. Electron Spectrosc. Rel. Phenom. 170, 4–12 (2009).
[Crossref]

J. Phys.: Condens. Matter (1)

B. Kaulich, P. Thibault, A. Gianoncelli, and M. Kiskinova, “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys.: Condens. Matter 23, 1–23 (2011).

J. Synchrotron Rad. (1)

S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, and C. David, “High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating,” J. Synchrotron Rad. 18, 442–446 (2011).
[Crossref]

Nat. Phys. (1)

C. Holzner, M. Feser, S. Vogt, B. Hornberger, S. B. Baines, and C. Jacobsen, “Zernike phase contrast in scanning microscopy with X-rays,” Nat. Phys. 6, 883–887 (2010).
[Crossref]

Nucl. Instr. Meth. Phys. Res. A (1)

B. Henrich, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobas, P. Kraft, A. Mozzanica, and B. Schmitt, “PILATUS: A single photon counting pixel detector for X-ray applications,” Nucl. Instr. Meth. Phys. Res. A 607, 247–249 (2009).
[Crossref]

Nucl. Instrum. Meth. A (1)

A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T. O. Mentes, M. Á. Niño, and M. Kiskinova, “Synchrotron-based photoelectron microscopy,” Nucl. Instrum. Meth. A 609, 195–202 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

T. Otaki, “Artifact Halo Reduction in Phase Contrast Microscopy Using Apodization,” Opt. Rev. 7, 119–122 (2000).
[Crossref]

Phys. Rev. B (1)

M. Stampanoni, R. Mokso, F. Marone, J. Vila-Comamala, S. Gorelick, P. Trtik, K. Jefimovs, and C. David, “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).
[Crossref]

Phys. Zeitschr. (1)

F. Zernike, “Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung,” Phys. Zeitschr. 36, 848–851 (1935).

Proc. Natl. Acad. Sci. USA. (1)

D. S. Gorman and R. P. Levine, “Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA. 54, 1665–1669 (1965).
[Crossref]

Rev. Sci. Instrum. (1)

H. Rarback, D. Shu, S. C. Feng, H. Ade, J. Kirz, I. McNulty, D. P. Kern, T. H. P. Chang, Y. Vladimirsky, N. Iskander, D. Attwood, K. McQuaid, and S. Rothman, “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Instrum. 59, 52–59 (1988).
[Crossref]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. Menzel, C. M. Kewish, P. Kraft, B. Henrich, K. Jefimovs, J. Vila-Comamala, C. David, M. Dierolf, P. Thibault, F. Pfeiffer, and O. Bunk, “Scanning transmission X-ray microscopy with a fast framing pixel detector,” Ultramicroscopy 110, 1143–1147 (2010).
[Crossref] [PubMed]

Other (4)

G. R. Morrison and B. Niemann, “Differential Phase Contrast X-Ray Microscopy,” in X-Ray Microscopy and Spectromicroscopy (Springer Verlag, 1998).
[Crossref]

M. Born and E. Wolf, Principles of Optics, (7.) (Cambridge University Press, 1999), pp. 421–425.

A. Siegel, G. Schmahl, and D. Rudolph, “Method and device for producing phase-contrast images,” US Patent4953188, August28, 1990

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic illustration of the full-field Zernike phase contrast setup. Radiation arrives from the left and is focused to the sample by an annular condenser. The unscattered part (blue) is imaged onto the phase plate in the back-focal plane of the objective lens (OL) and interferes with the scattered part (gray) in the detector resulting in Zernike phase contrast. In case of annular condenser, the phase plate has a shape of a ring.
Fig. 2
Fig. 2 Schematic illustration of the scanning Zernike phase contrast setup. Radiation arrives from the left, propagates through the phase mask, and is focused onto the sample with a lens. The subsequently transmitted radiation is collected by a pixelated detector that is required to enable integration support for the image of the mask.
Fig. 3
Fig. 3 Experimental procedure for acquiring a Zernike phase contrast signal in scanning geometry in case of a ring type phase shifter (a) and an object consisting of a square (b). The sample is raster scanned through the focal plane of the lens at positions Si j (c). After each movement, the bright-field cone image of the phase mask shows no contrast inside the dashed red lines when the focal spot is not on the object (d) and shows contrast when the object hits the focal spot (e). The final Zernike phase contrast signal for each scanning point pi j is calculated by integrating the signal from the projection of the phase mask (f).
Fig. 4
Fig. 4 Top hat function with all spatial frequencies present in its Fourier spectrum (green) and under-represented lower spatial frequencies (red).
Fig. 5
Fig. 5 Schematic illustration of a periodic phase mask with a fill factor of 1/4 (a), pseudorandom phase mask with a fill factor of 1/4 (b), and a phase ring (c). The meaning of the critical dimension (CD) is shown in figures (a) and (c).
Fig. 6
Fig. 6 Simulated intensity distribution in the sample plane in log-scale by using a ring phase shifter with inner diameter of 50 μm and width of 5 μm (left). The scale bar is 5 μm. The focal spot is the bright spot in the center of the figure. Radial line profile of the intensity distribution in log-scale (right).
Fig. 7
Fig. 7 Simulated intensity distribution in the sample plane in log-scale by using phase mask with pillars on a regular grid by varying the CD and the fill factor. The scale bar is 5 μm.
Fig. 8
Fig. 8 Simulated intensity distribution in the sample plane in log-scale by using phase shifter with square pillars on a random grid by varying the CD and the fill factor. The scale bar is 5 μm.
Fig. 9
Fig. 9 SEM-images of the different phase plate designs, periodic pillars (a), random pillars (b), and a ring (c). The scale bar in every image is 5 μm.
Fig. 10
Fig. 10 Zernike phase contrast image (c) using a phase mask consisting of a periodic pillar array on a square grid. The test sample is a Siemens star fabricated of electroplated nickel. Figures (a) and (b) present two Pilatus images that refer to pixels in computed Zernike phase contrast image indicated by the arrows. Outlined are three of the projected pillars from the phase mask, that are visible especially in (b). Transmission image of the Siemens star (d). The transmission image is not corrected for the variations of the incident intensity, thus showing the injection pattern of the synchrotron electron ring.
Fig. 11
Fig. 11 Nickel Siemens star imaged with random pillar array phase mask with CD=2p (a), CD=6p (b), and CD=10p (c), and line profiles along the dotted red lines (d). In figure (d) black line, blue line, and red line are from figures (a), (b), and (c), respectively. The profiles are vertically shifted for better comparison.
Fig. 12
Fig. 12 Nickel Siemens star imaged with periodic pillar phase masks with fill factor 1/16 (a), 1/9 (b), 1/4 (c), and line profiles along the dotted red line (d). In figure (d) black line, blue line, and red line are from figures (a), (b), and (c), respectively. The profiles are vertically shifted for better comparison.
Fig. 13
Fig. 13 Top left corner of the Ni Siemens star imaged with phase masks with fill factor 1/4 (left) and fill factor 1/16 (right).
Fig. 14
Fig. 14 Nickel Siemens stars imaged with periodic pillar array (a), random pillar array (b), and line profiles along the dotted red lines (c). In figure (c) black line and blue line refer to images (a) and (b), respectively. The profiles are vertically shifted for better comparison.
Fig. 15
Fig. 15 Nickel Siemens stars imaged by using periodic hole array (a), random hole array (b), a ring (c), and line profiles along the dotted red lines (d). In figure (d) black line, blue line, and red line are from figures (a), (b), and (c), respectively. The profiles are vertically shifted for better comparison.
Fig. 16
Fig. 16 Chlamydomonas cell imaged with periodic pillar array (a) randomized pillar array (b), and a ring (c), and integrated phase (d). Outlined areas in the red show isolated features that are not resolved in (a) imaged with periodic pillar array.

Metrics