Abstract

We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz2/3 and 87.6 dB Hz2/3 at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes

Li Chen, Michael G. Wood, and Ronald M. Reano
Opt. Express 21(22) 27003-27010 (2013)

Hybrid silicon and lithium niobate electro-optical ring modulator

Li Chen, Qiang Xu, Michael G. Wood, and Ronald M. Reano
Optica 1(2) 112-118 (2014)

Optical PAM-4 signal generation using a silicon Mach-Zehnder optical modulator

Sizhu Shao, Jianfeng Ding, Lingchen Zheng, Kaiheng Zou, Lei Zhang, Fan Zhang, and Lin Yang
Opt. Express 25(19) 23003-23013 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
    [Crossref]
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  4. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  5. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  6. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
    [Crossref] [PubMed]
  7. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]
  8. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  9. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  11. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
    [PubMed]
  12. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
    [Crossref] [PubMed]
  13. J. Du and J. Wang, “Experimental performance evaluation of analog signal transmission in a silicon microring resonator,” Opt. Lett. 40(7), 1181–1184 (2015).
    [Crossref] [PubMed]
  14. R. A. Cohen, O. Amrani, and S. Ruschin, “Linearized electro-optic racetrack modulator based on double injection method in silicon,” Opt. Express 23(3), 2252–2261 (2015).
    [Crossref] [PubMed]
  15. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  16. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
    [Crossref]
  17. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  18. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
    [Crossref] [PubMed]
  19. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
    [Crossref] [PubMed]
  20. L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
    [Crossref] [PubMed]
  21. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
    [Crossref]
  22. L. Chen, M. G. Wood, and R. M. Reano, “Compensating thermal drift of hybrid silicon and lithium niobate ring resonances,” Opt. Lett. 40(7), 1599–1602 (2015).
    [PubMed]
  23. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  24. M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
    [Crossref]
  25. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  26. H. Tazawa and W. H. Steier, “Linearity of ring resonator-based electro-optic polymer modulator,” Electron. Lett. 41(23), 1297–1298 (2005).
    [Crossref]
  27. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  28. M. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8(1), 083098 (2014).
    [Crossref]
  29. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [PubMed]
  30. J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
    [Crossref]
  31. R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
    [Crossref]
  32. A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
    [Crossref]

2015 (3)

2014 (2)

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

M. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8(1), 083098 (2014).
[Crossref]

2013 (4)

2012 (2)

2011 (3)

2010 (3)

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

2006 (3)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

2005 (2)

H. Tazawa and W. H. Steier, “Linearity of ring resonator-based electro-optic polymer modulator,” Electron. Lett. 41(23), 1297–1298 (2005).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1988 (1)

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[Crossref]

1987 (2)

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Agarwal, A.

Amrani, O.

Asghari, M.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Banwell, T.

Beausoleil, R. G.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

Becker, R. A.

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Berge, J.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Burr, J. R.

M. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8(1), 083098 (2014).
[Crossref]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, L.

Chiles, J.

Cohen, R. A.

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Cunningham, J. E.

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

Dong, P.

Du, J.

Fathpour, S.

Feng, D.

Feng, N.-N.

Flory, C. A.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Gevorgian, S.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Hochberg, M.

Jalali, B.

Jungerman, R. L.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[Crossref]

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Khan, S.

Kim, G.-D.

Kim, W.-J.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Krishnamoorthy, A. V.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Lee, D. C.

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Li, G.

Liang, H.

Lim, A. E.-J.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, Y.

Lo, G.-Q.

Löffler, M.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

Luff, B. J.

Luo, Y.

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Menendez, R.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nightingale, J. L.

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Olsson, E.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Qian, W.

Rabiei, P.

Raj, K.

Reano, R. M.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Ruschin, S.

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shubin, I.

Song, M.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Steier, W. H.

Streshinsky, M.

Sun, P.

Tazawa, H.

H. Tazawa and W. H. Steier, “Linearity of ring resonator-based electro-optic polymer modulator,” Electron. Lett. 41(23), 1297–1298 (2005).
[Crossref]

Thacker, H.

Toliver, P.

Vorobiev, A.

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

Vrhel, J. S.

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

Wang, J.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Willis, R. C.

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

Willner, A. E.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

Wood, M.

M. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8(1), 083098 (2014).
[Crossref]

Wood, M. G.

Woodward, T. K.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xu, Q.

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1(2), 112–118 (2014).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xuan, Z.

Yao, J.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Zhang, L.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zheng, X.

Appl. Phys. Lett. (2)

J. L. Nightingale, R. A. Becker, R. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti-diffused lithium niobate optical devices,” Appl. Phys. Lett. 51(10), 716–718 (1987).
[Crossref]

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett. 53(16), 1477–1479 (1988).
[Crossref]

Electron. Lett. (1)

H. Tazawa and W. H. Steier, “Linearity of ring resonator-based electro-optic polymer modulator,” Electron. Lett. 41(23), 1297–1298 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optic modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron. 16(1), 185–191 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

J. Appl. Phys. (1)

A. Vorobiev, J. Berge, S. Gevorgian, M. Löffler, and E. Olsson, “Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators,” J. Appl. Phys. 110(2), 024116 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Nanophoton. (1)

M. Wood, L. Chen, J. R. Burr, and R. M. Reano, “Optimization of electron beam patterned hydrogen silsesquioxane mask edge roughness for low-loss silicon waveguides,” J. Nanophoton. 8(1), 083098 (2014).
[Crossref]

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (9)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011).
[PubMed]

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
[Crossref] [PubMed]

P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

R. A. Cohen, O. Amrani, and S. Ruschin, “Linearized electro-optic racetrack modulator based on double injection method in silicon,” Opt. Express 23(3), 2252–2261 (2015).
[Crossref] [PubMed]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[PubMed]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
[Crossref] [PubMed]

L. Chen, M. G. Wood, and R. M. Reano, “12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes,” Opt. Express 21(22), 27003–27010 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Other (2)

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of hybrid Si/LiNbO3 ring modulator. For clarity, the PECVD SiO2 top-cladding layer and electrical contact pads are not shown. (b) Schematic of cross-section of device along dashed line in (a).
Fig. 2
Fig. 2 Calculated optical TE mode distribution at 1550 nm wavelength and electric field vectors from applied DC voltage.
Fig. 3
Fig. 3 (a) Top-view optical micrograph of fabricated device; (b) SEM of electrodes.
Fig. 4
Fig. 4 (a) Measured optical spectrum as a function of applied voltage; (b) linear fitting of the resonance wavelength shift as a function of applied voltage.
Fig. 5
Fig. 5 Measured optical modulation response and the S11 magnitude.
Fig. 6
Fig. 6 Test and measurement setup for characterization of linearity.
Fig. 7
Fig. 7 RF output power of the fundamental, SHD, and IMD3 components as a function of wavelength detuning from resonance for two RF tones centered at (a) 100 MHz, (b) 1 GHz, (c) 5 GHz, and (d) 10 GHz.
Fig. 8
Fig. 8 RF output power of the fundamental and IMD3 components as a function of RF input power for the LiNbO3 MZI and the Si/LiNbO3 ring at 0.997 GHz. The noise floor is in 1 Hz bandwidth.
Fig. 9
Fig. 9 RF output power of the fundamental and IMD3 components as a function of RF input power for the LiNbO3 MZI modulator and the hybrid silicon and LiNbO3 ring modulator at 9.997 GHz. The noise floor is in 1 Hz bandwidth.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n eff ( V in )= n e0 +α V in +β V in 2 +γ V in 3 +
n eff ( V in ) n e0 +α V in
I out ( λ, V in )=R(λ) P out,max [ 1 1 1+ 4 F 2 π 2 sin 2 [ πL n eff ( λ, V in  ) λ ] ]
I out ( λ, V in )= c 0 ( λ )+ c 1 ( λ ) V in + c 2 ( λ ) ( V in ) 2 + c 3 ( λ ) ( V in ) 3 +
  V in = A 1 e i ω 1 t + A 1 * e i ω 1 t + A 2 e i ω 2 t + A 2 * e i ω 2 t
SHD: c 2 (λ)( A 1 2 e i2 ω 1 t + A 1 *2 e i2 ω 1 t + A 2 2 e i2 ω 2 t + A 2 *2 e i2 ω 2 t )
IMD3:3 c 3 ( λ )[ A 1 2 A 2 * e i( 2 ω 1 ω 2 )t + A 1 *2 A 2 e i( 2 ω 1 ω 2 )t + A 2 2 A 1 * e i( 2 ω 2 ω 1 )t + A 2 *2 A 1 e i( 2 ω 2 ω 1 )t ]

Metrics