Abstract

Correlated experimental and simulation studies on the modulation of Surface Plasmon Polaritons (SPP) in Au/VO2 bilayers are presented. The modification of the SPP wave vector by the thermally-induced insulator-to-metal phase transition (IMT) in VO2 was investigated by measuring the optical reflectivity of the sample. Reflectivity changes are observed for VO2 when transitioning between the insulating and metallic states, enabling modulation of the SPP in the Au layer by the thermally induced IMT in the VO2 layer. Since the IMT can also be optically induced using ultrafast laser pulses, we postulate the viability of SPP ultrafast modulation for sensing or control.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Insulator to metal transition induced by surface plasmon polaritons in VO2/Au thin films

S. E. Madaras, J. Creeden, S. Kittiwatanakul, J. Lu, I. Novikova, and R. A. Lukaszew
Opt. Express 26(20) 25657-25666 (2018)

Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites

Thorben Jostmeier, Moritz Mangold, Johannes Zimmer, Helmut Karl, Hubert J. Krenner, Claudia Ruppert, and Markus Betz
Opt. Express 24(15) 17321-17331 (2016)

Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films

Melissa R. Beebe, J. Michael Klopf, Yuhan Wang, Salinporn Kittiwatanakul, Jiwei Lu, Stuart A. Wolf, and R. Alejandra Lukaszew
Opt. Mater. Express 7(1) 213-223 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  2. L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).
  3. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  5. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  6. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  7. S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
    [Crossref]
  8. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
    [Crossref]
  9. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
    [Crossref]
  10. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).
  12. J. Nag, “The solid-solid phase transition in vanadium dioxide thin films: synthesis, physics and application,” Ph.D. thesis (Vanderbilt, Nashville, TN, 2011).
  13. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
    [Crossref]
  14. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  15. K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
    [Crossref]
  16. L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
    [Crossref] [PubMed]
  17. E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
    [Crossref]
  18. Grating Solver Development Co.”, retrieved http://www.gsolver.com/ .
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  20. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]

2013 (2)

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

2012 (2)

2010 (1)

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

2009 (1)

2008 (2)

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

2007 (1)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

2006 (2)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

2005 (1)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Atwater, H. A.

Aydin, K.

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Boyd, E. M.

Carpenter, E. E.

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Carroll, K. J.

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Cavalleri, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chen, W.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Claassen, J.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Clavero, C.

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Crisman, E.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dicken, M. J.

Donev, E. U.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Feldman, L. C.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Fernández, F.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fourmaux, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Fujimori, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Giannetti, C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Haglund, R. F.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Hao, Z.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Kieffer, J. C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kirkwood, D.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Kittiwatanakul, S.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Laverock, J.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Liu, H.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Lopez, R.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Lu, J.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Lukaszew, R. A.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Lysenko, S.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Ma, J.

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Nelson, A. J.

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Newby, D.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Novikova, I.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Onoda, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Parmigiani, F.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Pei, Y.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Pryce, I. M.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Radue, E.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Rini, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Rúa, A.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Schoenlein, R. W.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Smith, K. E.

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Suh, J. Y.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

Sweatlock, L. A.

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vikhnin, V.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Walavalkar, S.

Wall, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

Wang, L.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

West, K. G.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Wincheski, R.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

Wolf, S. A.

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

L. Wang, E. Radue, S. Kittiwatanakul, C. Clavero, J. Lu, S. A. Wolf, I. Novikova, and R. A. Lukaszew, “Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications,” Opt. Lett. 37(20), 4335–4337 (2012).
[Crossref] [PubMed]

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Yang, K.

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

Yu, J.

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, “Optical switching in VO2 films by below-gap excitation,” Appl. Phys. Lett. 92(18), 181904 (2008).
[Crossref]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88(13), 133115 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using Gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (3)

L. Wang, K. Yang, C. Clavero, A. J. Nelson, K. J. Carroll, E. E. Carpenter, and R. A. Lukaszew, “Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles,” J. Appl. Phys. 107, 09B303 (2010).

S. Kittiwatanakul, J. Laverock, D. Newby, K. E. Smith, S. A. Wolf, and J. Lu, “Transport behavior and electronic structure of phase pure VO2 thin films grown on c-plane sapphire under different O2 partial pressure,” J. Appl. Phys. 114(5), 053703 (2013).
[Crossref]

E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew, and I. Novikova, “Effect of a substrate-induced microstructure on the optical properties of the insulator-metal transition temperature in VO2 thin films,” J. Appl. Phys. 113(23), 233104 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

K. G. West, J. Lu, J. Yu, D. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S. A. Wolf, “Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition,” J. Vac. Sci. Technol. A 26(1), 133–139 (2008).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (1)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Phys. Rev. Lett. (2)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

J. Nag, “The solid-solid phase transition in vanadium dioxide thin films: synthesis, physics and application,” Ph.D. thesis (Vanderbilt, Nashville, TN, 2011).

Grating Solver Development Co.”, retrieved http://www.gsolver.com/ .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The dispersion relation curves corresponding to light in vacuum (green dashed lines) and SPPs (solid red lines). Pink dashed lines represent the SPP curves offset by 2π/a. The shaded region is bounded by light lines representing the area in which SPPs can be excited. (b) Schematic of the SPP excitation on gratings. The plane of incidence is perpendicular to the direction of grating grooves.
Fig. 2
Fig. 2 (a) AFM topography image of the Au gratings. Green lines indicate line scans along the grating vector direction. The two blue crosses show one grating period along a line scan. (b) A line profile extracted from the AFM line scans. (c) AFM topography and (d) a line profile of the gratings in an additional direction.
Fig. 3
Fig. 3 (a) The lift-off step in the lithography process, which caused the additional Au structures seen in the AFM line scans in Figs. 2(b) and 2(d). (b) A schematic of the sample structure as determined by AFM.
Fig. 4
Fig. 4 (a) Schematic of the experimental setup for temperature-dependent red SPP and IR transmission measurements of a Au grating on VO2 thin film.
Fig. 5
Fig. 5 The IR transmission (λ = 1520 nm) of the VO2 thin film at normal incidence (left axis) and the red reflection (λ = 632 nm) of the Au gratings at the SPP critical angle θc = 44.75° (right axis) as a function of temperature. The two triangles indicate the temperature at which the detailed angular measurements were taken in Fig. 6(a), with the VO2 in the insulating state (T = 303 K) and the metallic state (T = 331 K).
Fig. 6
Fig. 6 Experimental (a) and simulated (b) reflectance of Au gratings on a VO2 thin film as a function of incident angle at two different temperatures correspondent to VO2 in the insulating state (T = 303 K) and metallic state (T = 331 K). The inset figures in (a) and (b) show the full wide range plot of the experimental and simulated reflectance. Both the experiment and simulation were performed at 632nm.
Fig. 7
Fig. 7 Simulated reflectance of Au gratings (a) without and (b) with additional Au structures at 632nm. The inset figures in (a) and (b) show the full wide range plot of the simulated reflectance.

Metrics