Abstract

Hologram memory is a candidate for high-capacity data storage. Magnetic holograms formed as magnetization directions have been studied to realize rewritable hologram media. Recently, we reported that the magnetophotonic microcavity (MPM) can improve diffraction efficiency because of enhanced Faraday rotation angle and deep hologram writing. In this study, we demonstrated a clear reconstructed image from magnetic holograms in an MPM medium. The structural condition of MPMs for high diffraction efficiency was investigated, and the MPM medium was actually fabricated. The image reconstructed from the MPM medium had approximately twice the brightness of that reconstructed using a monolayer film.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography

Ryosuke Isogai, Yuichi Nakamura, Hiroyuki Takagi, Taichi Goto, Pang Boey Lim, and Mitsuteru Inoue
Opt. Express 24(1) 522-527 (2016)

Error-free reconstruction of magnetic hologram via improvement of recording conditions in collinear optical system

Yuichi Nakamura, Zen Shirakashi, Hiroyuki Takagi, Pang Boey Lim, Taichi Goto, Hironaga Uchida, and Mitsuteru Inoue
Opt. Express 25(13) 15349-15357 (2017)

Magnetic volumetric hologram memory with magnetic garnet

Yuichi Nakamura, Hiroyuki Takagi, Pang Boey Lim, and Mitsuteru Inoue
Opt. Express 22(13) 16439-16444 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [Crossref]
  3. B. Breuckmann and W. Thieme, “Computer-aided analysis of holographic interferograms using the phase-shift method,” Appl. Opt. 24(14), 2145–2149 (1985).
    [Crossref] [PubMed]
  4. P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. A 9(11), 1969–1977 (1992).
    [Crossref]
  5. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260 (2009).
    [Crossref] [PubMed]
  6. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393–400 (1963).
    [Crossref]
  7. H. Coufal, D. Psaltis, and G. T. Sincerbox, G. T. Holographic Data Storage (Springer, 2000).
  8. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19(13), 993–994 (1994).
    [Crossref] [PubMed]
  9. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
    [Crossref] [PubMed]
  10. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
    [Crossref]
  11. D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
    [Crossref]
  12. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
    [Crossref]
  13. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393(6686), 665–668 (1998).
    [Crossref]
  14. G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4(2–3), 370–375 (1995).
    [Crossref]
  15. R. S. Mezrich, “Magnetic holography,” Appl. Opt. 9(10), 2275–2279 (1970).
    [Crossref] [PubMed]
  16. G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
    [Crossref]
  17. Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
    [Crossref] [PubMed]
  18. Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
    [Crossref]
  19. S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
    [Crossref]
  20. H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
    [Crossref]
  21. R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
    [Crossref]
  22. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
    [Crossref]
  23. A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 32(2_2), 140–145 (2008).
    [Crossref]
  24. M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
    [Crossref]
  25. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
    [Crossref]
  26. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
    [Crossref] [PubMed]
  27. H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
    [Crossref]

2014 (3)

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

2009 (1)

2008 (1)

A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 32(2_2), 140–145 (2008).
[Crossref]

2006 (2)

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

2005 (2)

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

1998 (2)

D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
[Crossref]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393(6686), 665–668 (1998).
[Crossref]

1995 (2)

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4(2–3), 370–375 (1995).
[Crossref]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
[Crossref] [PubMed]

1994 (1)

1992 (1)

1985 (1)

1975 (1)

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

1970 (2)

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

R. S. Mezrich, “Magnetic holography,” Appl. Opt. 9(10), 2275–2279 (1970).
[Crossref] [PubMed]

1969 (2)

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

1968 (1)

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

1963 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393(6686), 665–668 (1998).
[Crossref]

Aktsipetrov, O.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Barbastathis, G.

Baryshev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Benton, S. A.

Bongers, P. F.

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Breuckmann, B.

Buse, K.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393(6686), 665–668 (1998).
[Crossref]

Cetin, E. A.

D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
[Crossref]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Curtis, K.

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

Fan, G.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Fedyanin, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Fujikawa, R.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Goto, T.

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Granovsky, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Greiner, J. H.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Grishin, A. M.

A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 32(2_2), 140–145 (2008).
[Crossref]

Haskal, H. M.

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

Hilaire, P. S.

Horimai, H.

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

Inoue, M.

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

Isogai, R.

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

Khanikaev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Khartsev, S. I.

A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 32(2_2), 140–145 (2008).
[Crossref]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

Levene, M.

Levy, M.

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
[Crossref]

Li, J.

Lim, P. B.

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Lucente, M.

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

Mezrich, R. S.

Murzina, T.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Nakamura, Y.

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

Okada, N.

Pennington, K.

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Popma, T. J. A.

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

Psaltis, D.

Pu, A.

Robertson, J. M.

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

Sagara, N.

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

Sincerbox, G. T.

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4(2–3), 370–375 (1995).
[Crossref]

Takagi, H.

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Magnetic volumetric hologram memory with magnetic garnet,” Opt. Express 22(13), 16439–16444 (2014).
[Crossref] [PubMed]

Takaki, Y.

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

Tan, X.

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44(13), 2575–2579 (2005).
[Crossref] [PubMed]

Thieme, W.

Uchida, H.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

van Heerden, P. J.

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
[Crossref]

Wittekoek, S.

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[Crossref]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13(7), 223–225 (1968).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[Crossref]

IEEE Trans. Magn. (1)

H. M. Haskal, “Polarization and efficiency in magnetic holography,” IEEE Trans. Magn. 6(3), 542–545 (1970).
[Crossref]

J. Appl. Phys. (4)

M. Levy, “Normal modes and birefringent magnetophotonic crystals,” J. Appl. Phys. 99(7), 073104 (2006).
[Crossref]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93(7), 3906–3911 (2003).
[Crossref]

G. Fan, K. Pennington, and J. H. Greiner, “Magneto-optic hologram,” J. Appl. Phys. 40(3), 974–975 (1969).
[Crossref]

Y. Nakamura, H. Takagi, P. B. Lim, and M. Inoue, “Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films,” J. Appl. Phys. 116(10), 103106 (2014).
[Crossref]

J. Magn. Soc. Jpn. (2)

R. Isogai, N. Sagara, T. Goto, Y. Nakamura, P. B. Lim, and M. Inoue, “Diffraction efficiency of volumetric magnetic holograms with magnetophotonic crystals,” J. Magn. Soc. Jpn. 38(3-2), 119–122 (2014).
[Crossref]

A. M. Grishin and S. I. Khartsev, “All-garnet magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 32(2_2), 140–145 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39(8), R151–R161 (2006).
[Crossref]

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393(6686), 665–668 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

G. T. Sincerbox, “Holographic storage—the quest for the ideal material continues,” Opt. Mater. 4(2–3), 370–375 (1995).
[Crossref]

Opt. Rev. (1)

H. Horimai and X. Tan, “Advanced collinear holography,” Opt. Rev. 12(2), 90–92 (2005).
[Crossref]

Phys. Rev. B (1)

S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, “Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV,” Phys. Rev. B 12(7), 2777–2788 (1975).
[Crossref]

Proc. SPIE (1)

D. A. Waldman, H.-Y. S. Li, and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89–103 (1998).
[Crossref]

Other (1)

H. Coufal, D. Psaltis, and G. T. Sincerbox, G. T. Holographic Data Storage (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of collinear volumetric magnetic holography with a magnetophotonic microcavity. Incident light is focused near a magnetophotonic microcavity, where the light is confined in the magnetic layer through Fabry–Pérot resonance between two Bragg mirrors (BMs). A magnetic hologram recorded in the optical cavity system will be reconstructed with high efficiency because optical resonance results in the enhancement in magneto-optical effect and deep hologram writing.

Fig. 2
Fig. 2

(a) Structure of MPM media. (b) Thickness dependence of the transmittance. (c) Thickness dependence of the diffraction efficiency. The efficiency of each media showed the maximum value at a thickness determined by the balance between T, θF, and dw. All the points indicate the maximum diffraction efficiency with tuned optical power density at the writing process for each structure. (d) Dependence of the T and θF at tM on the number of repeated pairs in BMs, r.

Fig. 3
Fig. 3

Magnetic fringes (a) in the monolayer film at tYIG = 1.9 μm, (b) in the one-pair MPM at tYIG = 1.6 μm, (c) in the two-pair MPM at tYIG = 1.3 μm, and (d) in the four-pair MPM at tYIG = 0.8 μm. Uniform hologram writing was achieved in the MPMs by modulating the optical interference through the cavity resonance.

Fig. 4
Fig. 4

Experimental setup and reconstructed two-dimensional data pattern. (a) Schematic illustration of the experimental setup for writing and reconstructing magnetic holograms. The image modulated with a DMD is divided into two parts: the signal part and the reference part. (b) Original signal pattern shown with a DMD at the writing process. Reconstructed signal pattern from (c) the monolayer film and (d) the two-pair MPM structure. The MPM medium provided a clear, bright reconstructed image because the diffraction efficiency of the MPM medium was double that of the monolayer film.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η opt Tsin ( θ F × d w /t ) 2 T θ F 2 ( d w /t ) 2 ,

Metrics