Abstract

Yb:Sc2SiO5 has been investigated in a low-power laser femtosecond oscillator pumped by 400-mW single-mode fiber-coupled diode at 976 nm. Pulses as short as 71 fs were achieved. The same crystal was later employed in a regenerative amplifier, with an output power as high as 4.7 W at 500 kHz and sub-300-fs pulses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive femtosecond mode-locking and cw laser performance of Yb3+: Sc2SiO5

Wei De Tan, Dingyuan Tang, Xiaodong Xu, Jian Zhang, Changwen Xu, Feng Xu, Lihe Zheng, Liangbi Su, and Jun Xu
Opt. Express 18(16) 16739-16744 (2010)

Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode

Federico Pirzio, Samuele D. Di Dio Cafiso, Matthias Kemnitzer, Annalisa Guandalini, Florian Kienle, Stefano Veronesi, Mauro Tonelli, Juerg Aus der Au, and Antonio Agnesi
Opt. Express 23(8) 9790-9795 (2015)

Directly diode-pumped Yb:KY(WO4)2 regenerative amplifiers

Hsiao-hua Liu, John Nees, and Gérard Mourou
Opt. Lett. 27(9) 722-724 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
    [Crossref]
  2. R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
    [Crossref]
  3. L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
    [Crossref]
  4. K. S. Wentsch, L. Zheng, J. Xu, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb3+:Sc2SiO5 thin-disk laser,” Opt. Lett. 37(22), 4750–4752 (2012).
    [Crossref] [PubMed]
  5. J. Li, P. Gao, X. L. Zheng, L. Su, J. Xu, and X. Liang, “Diode-pumped Yb:SSO chirped pulse amplifier with 1 ps pulse duration,” Chin. Opt. Lett. 13(1), 011403 (2015).
    [Crossref]
  6. W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
    [Crossref] [PubMed]
  7. C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
    [Crossref]
  8. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express 20(9), 10077–10082 (2012).
    [Crossref] [PubMed]
  9. F. Pirzio, S. D. Di Dio Cafiso, M. Kemnitzer, A. Guandalini, F. Kienle, S. Veronesi, M. Tonelli, J. Aus der Au, and A. Agnesi, “Sub-50 fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode,” Opt. Express 23(8), 9790–9795 (2015).
    [Crossref]
  10. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35(6), 912–915 (1996).
    [Crossref] [PubMed]
  11. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid state laser,” J. Opt. Soc. Am. B 30, 1513–1516 (2013).
  12. E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CaGdAlO4 regenerative amplifiers,” Opt. Lett. 38(20), 4131–4133 (2013).
    [Crossref] [PubMed]

2015 (2)

2013 (3)

2012 (2)

2010 (1)

2008 (1)

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

2004 (1)

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

2003 (1)

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

1996 (1)

Agnesi, A.

Ahmed, M. A.

Aus der Au, J.

Campos, S.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Caracciolo, E.

De Tan, W.

Denoyer, A.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Derouet, J.

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

Di Dio Cafiso, S. D.

Ferrand, B.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Gao, P.

Gaume, R.

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

Graf, T.

Greborio, A.

Guandalini, A.

Jandl, S.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Keller, U.

Kemnitzer, M.

Kienle, F.

Kopf, D.

Li, J.

Liang, X.

J. Li, P. Gao, X. L. Zheng, L. Su, J. Xu, and X. Liang, “Diode-pumped Yb:SSO chirped pulse amplifier with 1 ps pulse duration,” Chin. Opt. Lett. 13(1), 011403 (2015).
[Crossref]

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Loiseau, P.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Pirzio, F.

Reali, G.

Spühler, G. J.

Su, L.

J. Li, P. Gao, X. L. Zheng, L. Su, J. Xu, and X. Liang, “Diode-pumped Yb:SSO chirped pulse amplifier with 1 ps pulse duration,” Chin. Opt. Lett. 13(1), 011403 (2015).
[Crossref]

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Tang, D.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

Tonelli, M.

Ugolotti, E.

Veronesi, S.

Viana, B.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

Vivien, D.

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

Weingarten, K. J.

Wentsch, K. S.

Wu, F.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Xu, C.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

Xu, F.

Xu, J.

Xu, X.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

Zhang, J.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

Zhao, G.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Zheng, L.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

K. S. Wentsch, L. Zheng, J. Xu, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb3+:Sc2SiO5 thin-disk laser,” Opt. Lett. 37(22), 4750–4752 (2012).
[Crossref] [PubMed]

W. De Tan, D. Tang, X. Xu, J. Zhang, C. Xu, F. Xu, L. Zheng, L. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+:Sc2SiO5,” Opt. Express 18(16), 16739–16744 (2010).
[Crossref] [PubMed]

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Zheng, X. L.

Zhu, H.

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb 3+ -doped rare earth orthosilicate crystals,” J. Phys. Condens. Matter 16(25), 4579–4590 (2004).
[Crossref]

Opt. Commun. (1)

C. Xu, D. Tang, J. Zhang, H. Zhu, X. Xu, L. Zheng, L. Su, and J. Xu, “Sub-100 fs pulse generation in a diode-pumped Yb:Sc2SiO5 laser,” Opt. Commun. 294, 237–240 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

R. Gaume, B. Viana, J. Derouet, and D. Vivien, “Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Resonator layout. The dashed lines correspond to CW-ML experiments setup, with the SESAM replacing HR mirror and the insertion of a couple of SF10 dispersive prisms for GDD compensation.
Fig. 2
Fig. 2 CW performance with different OCs.
Fig. 3
Fig. 3 a) Autocorrelation trace and optical spectrum (in the inset) of the shortest pulses obtained with the T = 0.8% OC at 1066 nm. b) Autocorrelation trace and optical spectrum (in the inset) of the shortest pulses obtained with the T = 0.8% OC using a knife edge to force the central output wavelength to move towards 1045 nm.
Fig. 4
Fig. 4 a) Autocorrelation trace of regenerative amplifier when seeded at 1045 nm. b) Optical spectrum of seeder (blue), regenerative amplifier (red), and in cavity-dumped operation (black).
Fig. 5
Fig. 5 a) Beam quality measurement at the maximum output power of 4.7 W. Inset: beam profile in the focus. b) Autocorrelation trace of the shortest pulses obtained from the regenerative amplifier at 1057 nm after compression. Inset: corresponding optical spectrum of the amplified pulses and the seeder.

Metrics