Abstract

We describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W. The integrated upconversion photodetector also functions as a compact autocorrelator with sub-ps resolution for measuring pulse width and chirp.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity narrowband wavelength mid-infrared detection at room temperature

Romain Demur, Arnaud Grisard, Loïc Morvan, Eric Lallier, Nicolas Treps, and Claude Fabre
Opt. Lett. 42(10) 2006-2009 (2017)

Nonlinear interaction between broadband single-photon-level coherent states

Yuanhua Li, Tong Xiang, Yiyou Nie, Minghuang Sang, and Xianfeng Chen
Photon. Res. 5(4) 324-328 (2017)

Photon correlation in single-photon frequency upconversion

Xiaorong Gu, Kun Huang, Haifeng Pan, E Wu, and Heping Zeng
Opt. Express 20(3) 2399-2407 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Downs and T. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensor 13, 5054–5098 (2013).
    [Crossref] [PubMed]
  2. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521, 69–94 (2012).
    [Crossref]
  3. A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2009).
    [Crossref]
  4. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [Crossref] [PubMed]
  5. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [Crossref] [PubMed]
  6. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
    [Crossref] [PubMed]
  7. P. S. Kuo, O. Slattery, Y. S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21, 22523–22531, (2013).
    [Crossref] [PubMed]
  8. G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer at telecom band,” Opt. Express 21, 13986–13991, (2013).
    [Crossref] [PubMed]
  9. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16, 19557–19561 (2008).
    [Crossref] [PubMed]
  10. R. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
    [Crossref]
  11. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O. Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
    [Crossref] [PubMed]
  12. K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [Crossref]
  13. K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
    [Crossref]
  14. X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
    [Crossref] [PubMed]
  15. M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
    [Crossref] [PubMed]
  16. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [Crossref] [PubMed]
  17. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491–3496 (2006).
    [Crossref] [PubMed]
  18. K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
    [Crossref]
  19. C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
    [Crossref] [PubMed]
  20. J. M. Diels, J. J. Fontaine, I. C. Mcmichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270–1282 (1985).
    [Crossref] [PubMed]

2014 (1)

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

2011 (1)

2010 (3)

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O. Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

2009 (3)

2008 (2)

2006 (1)

2005 (1)

2004 (2)

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[Crossref] [PubMed]

1985 (1)

Albota, M. A.

Andreani, L. C.

Asano, T.

Barclay, P.

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Borselli, M.

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Clark, A.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Clevenson, H.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

Collins, M.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Diamanti, E.

Diels, J. M.

Downs, C.

C. Downs and T. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensor 13, 5054–5098 (2013).
[Crossref] [PubMed]

Eggleton, B. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Englund, D.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[Crossref] [PubMed]

Faolain, L. O.

Faraon, A.

Fejer, M. M.

Fontaine, J. J.

Galli, M.

Gan, X.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

Gerace, D.

Gisin, N.

R. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Grillet, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Guizzetti, G.

Hatami, F.

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

Kim, Y. S.

Krauss, T. F.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O. Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[Crossref] [PubMed]

Kuo, P. S.

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2009).
[Crossref]

Langrock, C.

Li, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Li, L.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

Lin, Z.

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

Lukin, M. D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Ma, L.

Masselink, W.

Mcmichael, I. C.

Monat, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Moss, D. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Noda, S.

OFaolain, L.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Painter, O.

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Pan, J. W.

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Pelc, J. S.

Phillips, C. R.

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

Roussev, R. V.

Schroeder, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Shentu, G. L.

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Simoni, F.

Slattery, O.

Song, B. S.

Srinivasan, K.

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Sun, Q. C.

Takano, H.

Takesue, H.

Tang, X.

Thew, R.

R. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Toishi, M.

Tsai, C. C.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

Vandervelde, T.

C. Downs and T. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensor 13, 5054–5098 (2013).
[Crossref] [PubMed]

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2009).
[Crossref]

Vuckovic, J.

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[Crossref] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

Wang, X. D.

Welna, K.

Wong, F. N. C.

Xiong, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Yamamoto, Y.

Zbinden, H.

R. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

Zhang, Q.

Zheng, M. Y.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[Crossref]

J. Mod. Opt. (1)

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2009).
[Crossref]

Nano Lett. (1)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. OFaolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Opt. Express (8)

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491–3496 (2006).
[Crossref] [PubMed]

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O. Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[Crossref] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19, 21445–21456 (2011).
[Crossref] [PubMed]

P. S. Kuo, O. Slattery, Y. S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21, 22523–22531, (2013).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer at telecom band,” Opt. Express 21, 13986–13991, (2013).
[Crossref] [PubMed]

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16, 19557–19561 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rep. (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521, 69–94 (2012).
[Crossref]

Phys. Rev. B (1)

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Sci. Rep. (1)

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref] [PubMed]

Sensor (1)

C. Downs and T. Vandervelde, “Progress in infrared photodetectors since 2000,” Sensor 13, 5054–5098 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the PPC cavity-assisted upconversion Si detector; (b) Photograph of a fabricated upconversion detector; (c) Optical microscope image of the air-suspended PPC cavities on the polymer spacing layer; (d) SEM image of the employed L3 PPC cavity.

Fig. 2
Fig. 2

Optical characterization of the employed PPC cavity. (a) Reflection spectra of the PPC cavity, showing resonant peaks with high Q factors, indicated by the inset Lorentzian fitting; (b) Spectrum and far-field radiation (inset) of the cavity-enhanced SHG signal; (c) FDTD simulations of the cavity mode and upconverted mode, from left to right are x- and y-components of the fundamental mode, and z-component of the SHG signal at Γ point.

Fig. 3
Fig. 3

Photodetection performances of the upconversion detector. (a) Power, (b) spatial, and (c) polarization dependences of the incident light for the photoelectric conversion. (d) Photoresponsivity versus the coupled power.

Fig. 4
Fig. 4

(a) Experimental layout for measuring an ultrafast pulse using the fabricated upconversion detector; (b) Measurement result of the 250-fs ultrafast pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I I A C ( τ ) = 1 + { 2 + exp [ A 2 2 ( τ τ p ) 2 cos ( 2 ω τ ) ] } exp [ 1 2 ( τ τ p ) 2 ] + 4 exp [ 3 + β 2 8 ( τ τ p ) 2 ] cos [ A 4 ( τ τ p ) 2 ] cos ( ω τ )

Metrics