Abstract

Abstract: An efficient method for controlling the spatial coherence has previously been demonstrated in a modified degenerate cavity laser. There, the degree of spatial coherence was controlled by changing the size of a circular aperture mask placed inside the cavity. In this paper, we extend the method and perform general manipulation of the spatial coherence properties of the laser, by resorting to more sophisticated intra-cavity masks. As predicted from the Van Cittert Zernike theorem, the spatial coherence is shown to depend on the geometry of the masks. This is demonstrated with different mask geometries: a variable slit which enables independent control of spatial coherence properties in one coordinate axis without affecting those in the other; a double aperture, an annular ring and a circular aperture array which generate spatial coherence functional forms of cosine, Bessel and comb, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring coherence functions using non-parallel double slits

Shawn Divitt, Zachary J. Lapin, and Lukas Novotny
Opt. Express 22(7) 8277-8290 (2014)

Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography

Dawid Borycki, Michał Hamkało, Maciej Nowakowski, Maciej Szkulmowski, and Maciej Wojtkowski
Biomed. Opt. Express 10(4) 2032-2054 (2019)

Spatial Coherence in Periodic Systems*

William Streifer
J. Opt. Soc. Am. 56(11) 1481-1489 (1966)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics (John Wiley & Sons, 2000).
  2. J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
    [Crossref]
  3. Y. Wang, P. Meng, D. Wang, L. Rong, and S. Panezai, “Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator,” Opt. Express 21(17), 19568–19578 (2013).
    [Crossref] [PubMed]
  4. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37(10), 1770–1775 (1998).
    [Crossref] [PubMed]
  5. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).
    [Crossref] [PubMed]
  6. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).
    [Crossref] [PubMed]
  7. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39(23), 4107–4111 (2000).
    [Crossref] [PubMed]
  8. G. W. Stroke and D. G. Falconer, “Attainment of high resolutions in holography by multi-directional illumination and moving scatterers,” Phys. Lett. 15(3), 238–240 (1965).
    [Crossref]
  9. S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless Diffuser,” J. Opt. Soc. Am. 61(7), 847 (1971).
    [Crossref]
  10. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [Crossref] [PubMed]
  11. J. Turunen, A. Vasara, and A. T. Friberg, “Propagation invariance and self-imaging in variable-coherence optics,” J. Opt. Soc. Am. A 8(2), 282 (1991).
    [Crossref]
  12. A. W. Lohmann, G. Shabtay, and D. Mendlovic, “Synthesis of hybrid spatial coherence,” Appl. Opt. 38(20), 4279–4280 (1999).
    [Crossref] [PubMed]
  13. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
    [Crossref]
  14. Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
    [Crossref]
  15. T. S. McKechnie, “Reduction of speckle by a moving aperture - first order statistics,” Opt. Commun. 13(1), 35–39 (1975).
    [Crossref]
  16. Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
    [Crossref]
  17. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
    [PubMed]
  18. B. Rodenburg, M. Mirhosseini, O. S. Magańa-Loaiza, and R. W. Boyd, “Experimental generation of an optical field with arbitrary spatial coherence properties,” J. Opt. Soc. Am. B 31, A51 (2014).
  19. H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
    [Crossref]
  20. H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).
  21. C. S. Liu, Y. C. Chang, K. W. Lin, and P. H. Lin, “Speckle reduction in laser imaging applications using rotating magneto-optical disk,” J. Opt. Soc. Am. A 31(1), 16–20 (2014).
    [Crossref] [PubMed]
  22. C. Saloma, S. Kawata, and S. Minami, “Speckle reduction by wavelength and space diversity using a semiconductor laser,” Appl. Opt. 29(6), 741–742 (1990).
    [Crossref] [PubMed]
  23. B. Dingel and S. Kawata, “Laser-diode microscope with fiber illumination,” Opt. Commun. 93(1-2), 27–32 (1992).
    [Crossref]
  24. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18(7), 549–551 (1993).
    [Crossref] [PubMed]
  25. Y. Imai and Y. Ohtsuka, “Optical coherence modulation by ultrasonic waves. 1: Dependence of partial coherence on ultrasonic parameters,” Appl. Opt. 19(4), 542–547 (1980).
    [Crossref] [PubMed]
  26. Y. Imai, M. Imai, and Y. Ohtsuka, “Optical coherence modulation by ultrasonic waves. 2: Application to speckle reduction,” Appl. Opt. 19(20), 3541–3544 (1980).
    [Crossref] [PubMed]
  27. V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48(1), 80–90 (2009).
    [Crossref] [PubMed]
  28. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35(3), 444–446 (2010).
    [Crossref] [PubMed]
  29. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
    [Crossref] [PubMed]
  30. M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
    [Crossref] [PubMed]
  31. M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
    [Crossref] [PubMed]
  32. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
    [Crossref]
  33. A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51(1), 80–89 (1963).
    [Crossref]
  34. In a related paper [31], we placed an upper bound of 620 nsec for the time it takes the modified degenerate cavity laser to obtain its spatial coherence properties.

2014 (3)

2013 (5)

2012 (1)

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
[Crossref]

2010 (3)

2009 (1)

2005 (1)

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
[Crossref]

2002 (2)

2000 (1)

1999 (1)

1998 (1)

1993 (1)

1992 (1)

B. Dingel and S. Kawata, “Laser-diode microscope with fiber illumination,” Opt. Commun. 93(1-2), 27–32 (1992).
[Crossref]

1991 (1)

1990 (1)

1986 (1)

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

1985 (1)

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

1982 (1)

Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
[Crossref]

1980 (2)

1975 (1)

T. S. McKechnie, “Reduction of speckle by a moving aperture - first order statistics,” Opt. Commun. 13(1), 35–39 (1975).
[Crossref]

1971 (1)

1965 (1)

G. W. Stroke and D. G. Falconer, “Attainment of high resolutions in holography by multi-directional illumination and moving scatterers,” Phys. Lett. 15(3), 238–240 (1965).
[Crossref]

1963 (1)

A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51(1), 80–89 (1963).
[Crossref]

Akram, M. N.

Ambar, H.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

An, S.

Aoki, Y.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

Asakura, T.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
[Crossref]

Boyd, R. W.

Bromberg, Y.

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Cai, Y.

Cao, H.

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
[Crossref] [PubMed]

Chang, Y. C.

Chen, X.

Davidson, F. M.

Davidson, N.

M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
[Crossref] [PubMed]

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
[Crossref] [PubMed]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Dingel, B.

Falconer, D. G.

G. W. Stroke and D. G. Falconer, “Attainment of high resolutions in holography by multi-directional illumination and moving scatterers,” Phys. Lett. 15(3), 238–240 (1965).
[Crossref]

Fleischer, J. W.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
[Crossref]

Fox, A. G.

A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51(1), 80–89 (1963).
[Crossref]

Friberg, A. T.

Friesem, A. A.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
[Crossref] [PubMed]

M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
[Crossref] [PubMed]

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
[Crossref]

Gbur, G.

Goodman, J. W.

Halldórsson, T.

Imai, M.

Imai, Y.

Joyeux, D.

Kartashov, V.

Katz, O.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Kawagoe, Y.

Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
[Crossref]

Kawata, S.

Kubota, S.

Lapchuk, A.

Li, T.

A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51(1), 80–89 (1963).
[Crossref]

Lin, K. W.

Lin, P. H.

Liu, C. S.

Liu, X.

Lohmann, A. W.

Lowenthal, S.

Magana-Loaiza, O. S.

McKechnie, T. S.

T. S. McKechnie, “Reduction of speckle by a moving aperture - first order statistics,” Opt. Commun. 13(1), 35–39 (1975).
[Crossref]

Mendlovic, D.

Meng, P.

Minami, S.

Mirhosseini, M.

Nixon, M.

M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
[Crossref] [PubMed]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
[Crossref] [PubMed]

Ohtsuka, Y.

Ouyang, G.

Panezai, S.

Pétursson, P. R.

Prieto, D. V.

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
[Crossref]

Ramírez, J. A. H.

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
[Crossref]

Redding, B.

Ricklin, J. C.

Rodenburg, B.

Ronen, E.

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
[Crossref] [PubMed]

Rong, L.

Rosen, J.

Saloma, C.

Shabtay, G.

Silberberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Situ, G.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
[Crossref]

Small, E.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Song, J.

Stroke, G. W.

G. W. Stroke and D. G. Falconer, “Attainment of high resolutions in holography by multi-directional illumination and moving scatterers,” Phys. Lett. 15(3), 238–240 (1965).
[Crossref]

Takai, N.

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
[Crossref]

Takeda, M.

Tong, Z.

Tschudi, T.

Turunen, J.

Vasara, A.

Waller, L.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
[Crossref]

Wang, D.

Wang, F.

Wang, L.

Wang, Y.

Wolf, E.

Yang, H.

Yeo, I.

Yuan, Y.

Yun, S.

Yurlov, V.

Appl. Opt. (9)

L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37(10), 1770–1775 (1998).
[Crossref] [PubMed]

J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt. 39(23), 4107–4111 (2000).
[Crossref] [PubMed]

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

A. W. Lohmann, G. Shabtay, and D. Mendlovic, “Synthesis of hybrid spatial coherence,” Appl. Opt. 38(20), 4279–4280 (1999).
[Crossref] [PubMed]

M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49(17), 3297–3304 (2010).
[PubMed]

C. Saloma, S. Kawata, and S. Minami, “Speckle reduction by wavelength and space diversity using a semiconductor laser,” Appl. Opt. 29(6), 741–742 (1990).
[Crossref] [PubMed]

Y. Imai and Y. Ohtsuka, “Optical coherence modulation by ultrasonic waves. 1: Dependence of partial coherence on ultrasonic parameters,” Appl. Opt. 19(4), 542–547 (1980).
[Crossref] [PubMed]

Y. Imai, M. Imai, and Y. Ohtsuka, “Optical coherence modulation by ultrasonic waves. 2: Application to speckle reduction,” Appl. Opt. 19(20), 3541–3544 (1980).
[Crossref] [PubMed]

V. Yurlov, A. Lapchuk, S. Yun, J. Song, I. Yeo, H. Yang, and S. An, “Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,” Appl. Opt. 48(1), 80–90 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38(1), 71–78 (1985).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6(7), 474–479 (2012).
[Crossref]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7(11), 919–924 (2013).
[Crossref]

Opt. Commun. (2)

B. Dingel and S. Kawata, “Laser-diode microscope with fiber illumination,” Opt. Commun. 93(1-2), 27–32 (1992).
[Crossref]

T. S. McKechnie, “Reduction of speckle by a moving aperture - first order statistics,” Opt. Commun. 13(1), 35–39 (1975).
[Crossref]

Opt. Express (1)

Opt. Int. J. Light Electron Opt. (2)

J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Opt. Int. J. Light Electron Opt. 116(1), 44–48 (2005).
[Crossref]

H. Ambar, Y. Aoki, N. Takai, and T. Asakura, “Fringe contrast improvement in speckle photograph by means of speckle reduction using vibrating optical fiber,” Opt. Int. J. Light Electron Opt. 74, 60 (1986).

Opt. Lasers Eng. (1)

Y. Kawagoe, N. Takai, and T. Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers Eng. 3(3), 197–218 (1982).
[Crossref]

Opt. Lett. (4)

Phys. Lett. (1)

G. W. Stroke and D. G. Falconer, “Attainment of high resolutions in holography by multi-directional illumination and moving scatterers,” Phys. Lett. 15(3), 238–240 (1965).
[Crossref]

Phys. Rev. Lett. (2)

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).
[Crossref] [PubMed]

Proc. IEEE (1)

A. G. Fox and T. Li, “Modes in a maser interferometer with curved and tilted mirrors,” Proc. IEEE 51(1), 80–89 (1963).
[Crossref]

Other (2)

In a related paper [31], we placed an upper bound of 620 nsec for the time it takes the modified degenerate cavity laser to obtain its spatial coherence properties.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental arrangements for the modified degenerate cavity laser and for characterizing the spatial coherence properties. (a) Includes the arrangement for measuring the absolute value of the complex coherence factor |μ|. (b) Includes the arrangement for measuring M2. (c) Includes the arrangement for measuring speckle contrast.
Fig. 2
Fig. 2 Speckle contrast and absolute value of the complex coherence factor |μ| as functions of diameter, for a circular aperture as the spatial filter. (a) Experimental speckle contrast C and calculated speckle contrast N-1/2 as a function of circular aperture diameter. Blue curve – direct experimental speckle contrast measurements; green curve – calculated speckle contrast, based on M4 measurements; red curve – calculated speckle contrast, based on measurements of the absolute value of the complex coherence factor |μ|. (b) Normalized speckle contrast images [top row] and experimental and simulation images of |μ| [middle and bottom rows] for circular aperture diameters of 0.12 mm, 0.5 mm and 6 mm, corresponding to points A, B and C, in (a), respectively.
Fig. 3
Fig. 3 Speckle contrast and absolute value of the complex coherence factor |μ| as functions of width, for a slit aperture as the spatial filter. (a) Experimental speckle contrast C and calculated speckle contrast N-1/2 as a function of slit width. Blue curve – direct experimental speckle contrast measurements; green curve – calculated speckle contrast, based on M4 measurements; red curve – calculated speckle contrast, based on measurements of the absolute value of the complex coherence factor |μ|. (b) Normalized speckle contrast images [top row] and experimental and simulation images of |μ| [middle and bottom rows] for slit widths of 0.08mm, 0.45 mm and 5 mm, corresponding to points A, B and C, in (a), respectively.
Fig. 4
Fig. 4 Experimental speckle images obtained with an intra-cavity slit as the spatial filter and an external 1D optical diffuser. (a) The slit is parallel to the orientation of the 1D diffuser; (b) the slit is perpendicular to the orientation of the 1D diffuser.
Fig. 5
Fig. 5 Experimental images of the absolute value of the complex coherence factor |μ| and their measured (continuous blue line) and calculated (dashed red line) cross-sections for different geometries of the spatial filter. (a) Circular aperture resulting in a jinc coherence function; (b) annular aperture resulting in a zero order Bessel coherence function; (c) double aperture resulting in a cosine coherence function; and (d) array of circular apertures resulting in a comb coherence function.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ(x',y';x,y)= E(x',y') E * (x,y) | E(x',y') | 2 | E(x,y) | 2 ,
v(x,y)=| μ( x',y';x,y ) |.
μ( x',y';x,y ) I( ξ,η )exp{ 2πi λz [ ( xx' )ξ+( yy' )η ] }dξdη.

Metrics