Abstract

Localized surface plasmon resonances (LSPR) and plasmon couplings in Ag capped Si Nanopillar (Ag NP) structures are studied using 3D FEM simulations and dark-field scattering microscopy. Simulations show that a standalone Ag NP supports two LSPR modes, i.e. the particle mode and the cavity mode. The LSPR peak position of the particle mode can be tuned by changing the size of the Ag cap, and can be hybridized by leaning of pillars. The resonance position of the cavity resonance mode can be tuned primarily via the diameter of the Si pillar, and cannot be tuned via leaning of Ag NPs. The presence of a substrate dramatically changes the intensity of these two LSPR modes by introducing constructive and destructive interference patterns with incident and reflected fields. Experimental scattering spectra can be interpreted using theoretical simulations. The Ag NP substrate displays a broad plasmonic resonance band due to the contribution from both the hybridized particle LSPR and the cavity LSPR modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors

Cheng-Yen Chen, Jyh-Yang Wang, Fu-Ji Tsai, Yen-Cheng Lu, Yean-Woei Kiang, and C. C. Yang
Opt. Express 17(16) 14186-14198 (2009)

Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate

Chee Leong Tan, Soo Kyung Lee, and Yong Tak Lee
Opt. Express 23(5) 6254-6263 (2015)

Plasmon-driven surface catalysis on photochemically deposited-based SERS substrates

Donghui Si, Keyuan Feng, Kenji Kitamura, Anping Liu, Liang Pan, Wenhao Li, Ting Liu, Yingzhou Huang, and Xiaoyan Liu
Appl. Opt. 55(30) 8468-8471 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  3. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
    [Crossref] [PubMed]
  4. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  5. B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
    [Crossref]
  6. S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
    [Crossref] [PubMed]
  7. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref] [PubMed]
  8. O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
    [Crossref]
  9. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
    [Crossref] [PubMed]
  10. R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
    [Crossref] [PubMed]
  11. V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
    [Crossref]
  12. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [Crossref] [PubMed]
  13. S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
    [Crossref] [PubMed]
  14. A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
    [Crossref] [PubMed]
  15. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  16. X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
    [Crossref] [PubMed]
  17. M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
    [Crossref] [PubMed]
  18. P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
    [Crossref] [PubMed]
  19. M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
    [Crossref] [PubMed]
  20. S. J. Lee and M. Moskovits, “Remote Sensing by Plasmonic Transport,” J. Am. Chem. Soc. 134(28), 11384–11387 (2012).
    [Crossref] [PubMed]
  21. N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
    [Crossref] [PubMed]
  22. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
    [Crossref]
  23. B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
    [Crossref] [PubMed]
  24. M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
    [PubMed]
  25. K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
    [Crossref]
  26. J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
    [Crossref] [PubMed]
  27. J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
    [Crossref]
  28. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  29. S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
    [Crossref]
  30. E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
    [Crossref]
  31. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
    [Crossref]
  32. L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
    [Crossref] [PubMed]
  33. S. Raza, W. Yan, N. Stenger, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects,” Opt. Express 21(22), 27344–27355 (2013).
    [Crossref] [PubMed]
  34. K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
    [Crossref] [PubMed]
  35. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]

2015 (1)

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

2014 (6)

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

2013 (6)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

S. Raza, W. Yan, N. Stenger, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects,” Opt. Express 21(22), 27344–27355 (2013).
[Crossref] [PubMed]

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

2012 (5)

S. J. Lee and M. Moskovits, “Remote Sensing by Plasmonic Transport,” J. Am. Chem. Soc. 134(28), 11384–11387 (2012).
[Crossref] [PubMed]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
[Crossref] [PubMed]

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

2011 (4)

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

2010 (2)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

2009 (2)

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

2008 (4)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

2005 (1)

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2002 (1)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
[Crossref]

2001 (1)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Alstrøm, T. S.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Ayala-Orozco, C.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Banholzer, M. J.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Beleggia, M.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

Bell, S. E. J.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Bhuiya, A. M.

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Blaber, M. G.

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

Boisen, A.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Bosco, F. G.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Boyle, M. G.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Bratkovsky, A. M.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Cao, Y.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Castillo, J. J.

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Castillo-León, J.

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Chang, W. S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, S.

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

Cheng, X. L.

K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dawson, P.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

de Lasson, J. R.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Doherty, M. D.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Duenas, J. A.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Duyne, R. P.

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

Dyer, M. J.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Fendler, J. H.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Fernanda Cardinal, M.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

Frontiera, R. R.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

Goodman, A. M.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Greeneltch, N. G.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

Gupta, R.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
[Crossref]

Hakonen, A.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Halas, N. J.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Henry, A.-I.

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

Hu, M.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Hübner, J.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Hutter, E.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Janik, K. A.

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joshi, A.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Ju, J.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Kadkhodazadeh, S.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

Kedem, O.

O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
[Crossref]

Kern, A. M.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Kleinman, S. L.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

Kneipp, H.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, K.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Knight, M. W.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Kreiter, M.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Larsen, P. E.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

Lee, L. P.

K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
[Crossref] [PubMed]

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Lee, S. J.

S. J. Lee and M. Moskovits, “Remote Sensing by Plasmonic Transport,” J. Am. Chem. Soc. 134(28), 11384–11387 (2012).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, X.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Li, Z.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Lin, Q.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Link, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Ma, R.

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Martin, O. J.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Millstone, J. E.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Milne, W. I.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Mirkin, C. A.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Mogensen, K. B.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

Moran, C. H.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

Mortensen, N. A.

Moskovits, M.

S. J. Lee and M. Moskovits, “Remote Sensing by Plasmonic Transport,” J. Am. Chem. Soc. 134(28), 11384–11387 (2012).
[Crossref] [PubMed]

Naumov, I.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Neumann, O.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Nordlander, P.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Ou, F. S.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Palla, M.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qin, L.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Raza, S.

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Rindzevicius, T.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Rochholz, H.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Ross, B. M.

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Roxworthy, B. J.

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Roy, D.

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

Rozlosnik, N.

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Rubinstein, I.

O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
[Crossref]

Schatz, G. C.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

Schmid, S.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

Schmidt, M. S.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Stenger, N.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

Svedendahl, M.

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

Svendsen, W.

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Teh, A. S.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Teo, K. B.

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Urban, C.

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

Vaskevich, A.

O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
[Crossref]

Wagner, J. B.

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Weimer, W. A.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
[Crossref]

Williams, R. S.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Wu, K.

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

Wu, K. Y.

K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
[Crossref] [PubMed]

Wu, L. Y.

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Wu, W.

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

Wu, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wubs, M.

Xia, X.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

Xia, Y.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Yan, W.

Yang, J.

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yu, X.

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Zeng, J.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

Zhang, Q.

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X.

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

ACS Nano (2)

A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander, and N. J. Halas, “The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells,” ACS Nano 8(4), 3222–3231 (2014).
[Crossref] [PubMed]

J. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrøm, M. S. Schmidt, A. Boisen, J. Ju, and Q. Lin, “Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping,” ACS Nano 7(6), 5350–5359 (2013).
[Crossref] [PubMed]

Adv. Mater. (2)

M. S. Schmidt, J. Hübner, and A. Boisen, “Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[PubMed]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of Crescent-Shaped Optical Antennas,” Adv. Mater. 17(17), 2131–2134 (2005).
[Crossref]

Anal. Chem. (2)

N. G. Greeneltch, M. G. Blaber, A.-I. Henry, G. C. Schatz, and R. P. Van Duyne, “Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates,” Anal. Chem. 85(4), 2297–2303 (2013).
[Crossref] [PubMed]

R. Bukasov and J. S. Shumaker-Parry, “Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy,” Anal. Chem. 81(11), 4531–4535 (2009).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008).
[Crossref] [PubMed]

Chem. Rev. (2)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS - a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 37(5), 885–897 (2008).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (1)

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, “Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals,” J Phys Chem C Nanomater Interfaces 116(41), 21647–21656 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

M. Hu, F. S. Ou, W. Wu, I. Naumov, X. Li, A. M. Bratkovsky, R. S. Williams, and Z. Li, “Gold Nanofingers for Molecule Trapping and Detection,” J. Am. Chem. Soc. 132(37), 12820–12822 (2010).
[Crossref] [PubMed]

S. J. Lee and M. Moskovits, “Remote Sensing by Plasmonic Transport,” J. Am. Chem. Soc. 134(28), 11384–11387 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92(9), 5264 (2002).
[Crossref]

J. Nanopart. Res. (1)

J. J. Castillo, T. Rindzevicius, K. Wu, M. S. Schmidt, K. A. Janik, A. Boisen, W. Svendsen, N. Rozlosnik, and J. Castillo-León, “Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates,” J. Nanopart. Res. 16(7), 2525 (2014).
[Crossref]

J. Phys. Chem. B (1)

E. Hutter, J. H. Fendler, and D. Roy, “Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[Crossref]

J. Phys. Chem. C (3)

S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner, and K. Kneipp, “Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS,” J. Phys. Chem. C 118(10), 5478–5485 (2014).
[Crossref]

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, A. Hakonen, and A. Boisen, “Wafer-Scale Leaning Silver Nanopillars for Molecular Detection at Ultra-Low Concentrations,” J. Phys. Chem. C 119(4), 2053–2062 (2015).
[Crossref]

O. Kedem, A. Vaskevich, and I. Rubinstein, “Critical issues in localized plasmon sensing,” J. Phys. Chem. C 118(16), 8227–8244 (2014).
[Crossref]

MRS Bull. (2)

B. Sharma, M. Fernanda Cardinal, S. L. Kleinman, N. G. Greeneltch, R. R. Frontiera, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “High performance SERS substrates: advances and challenges,” MRS Bull. 38(08), 615–624 (2013).
[Crossref]

V. J. Sorger, R. F. Oulton, R. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Nano Lett. (4)

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref] [PubMed]

P. Dawson, J. A. Duenas, M. G. Boyle, M. D. Doherty, S. E. J. Bell, A. M. Kern, O. J. Martin, A. S. Teh, K. B. Teo, and W. I. Milne, “Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes,” Nano Lett. 11(2), 365–371 (2011).
[Crossref] [PubMed]

S. Chen, M. Svedendahl, R. P. Duyne, and M. Käll, “Plasmon-enhanced colorimetric ELISA with single molecule sensitivity,” Nano Lett. 11(4), 1826–1830 (2011).
[Crossref] [PubMed]

L. Y. Wu, B. M. Ross, and L. P. Lee, “Optical Properties of the Crescent-Shaped Nanohole Antenna,” Nano Lett. 9(5), 1956–1961 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

K. Y. Wu, X. L. Cheng, and L. P. Lee, “Intra-particle coupling and plasmon tuning of multilayer Au/dielectric/Au nanocrescents adhered to a dielectric cylinder,” Nanotechnology 23(5), 055201 (2012).
[Crossref] [PubMed]

Nat. Commun. (4)

B. J. Roxworthy, A. M. Bhuiya, X. Yu, E. K. C. Chow, and K. C. Toussaint., “Reconfigurable nanoantennas using electron-beam manipulation,” Nat. Commun. 5, 4427 (2014).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref] [PubMed]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a), (b) A modeled single NP, (a) x-z cross-sectional view, (b) x-y top view. Yellow represents metal, while gray stands for silicon. An ellipsoid with a rounded bottom (r = 5 nm) and a cone are used to approximate the metal cap and the tip of the Si pillar, respectively. The substrate is modeled by a Si layer stacked by an Ag film with a hole (radius = a). Unless otherwise noted, the substrate area (surrounded by dotted lines) is excluded from the simulation to reduce computation time. Default values of the geometric parameters are a = 62 nm, c = 155 nm, ht = 100 nm, hp = 635 nm, d = 40 nm, D = 200 nm and L = 400 nm. These values are chosen referring to real NPs observed in (c) and (d). (c) A cross-sectional SEM image of the NPs. Si pillars are covered by Ag, and the Si substrate is covered by an Ag film with holes near the Si pillars. The deposition thickness of Ag is DAg = 200 nm. (d) A cross-sectional SEM image of the NPs. The Ag film and the Ag caps are lifted up to reveal the bare Si pillars.
Fig. 2
Fig. 2 (a) Calculated scattering cross-section spectra for a single Ag@Si NP (grey line) and a single Au@Si NP (yellow dots). (b) EF distributions on the surface of an Ag@Si NP at resonant LSP wavelengths. (c) Calculated scattering cross-section spectra for an Ag@Si NP with substrate (red dash line) and a standalone Ag@Si NP (grey line). (d) Cross-sectional EF distributions of an Ag@Si NP with a substrate at its resonant LSP wavelengths. The maximum EFs in (b) and (d) are obtained based on the electric fields on the surfaces of those NPs.
Fig. 3
Fig. 3 (a) Calculated scattering cross-section spectra of standalone Ag@Si NPs with different Si pillar diameter d. Asterisks, five-pointed stars and triangles represent the cavity modes, the particle modes and the third mode, respectively. (b) EF distributions on the surface of an Ag@Si NP at resonant wavelengths plotted for the particle mode and the cavity mode, for d = 24 nm. (c) Cavity LSPR wavelengths versus Si pillar diameter d. (d) Calculated scattering cross-section spectra of two standalone Ag@Si NPs. One contains a flat Si pillar tip while the other contains a sharp one. (e) Calculated scattering cross-section spectra of Ag@Si NPs (including substrates) with different Ag deposition thicknesses 125 nm, 150 nm, 200 nm and 225 nm. Geometric parameters are extracted from SEM images. For 125 nm of deposited Ag, a = 37 nm, c = 91 nm, thickness of Ag film on Si wafer = 125 nm. For the 150 nm case, a = 45 nm, c = 144 nm, thickness of Ag film on Si wafer = 150 nm. For the 200 nm case, default values stated in the caption of Fig. 1 are used. For the 225 nm case, a = 65 nm, c = 218 nm, thickness of Ag film on Si wafer = 225 nm. A comparative SEM image showing the Ag@Si NP substrates with different Ag deposition thicknesses can be found in the appendix, section 6.
Fig. 4
Fig. 4 (a) Calculated scattering cross-section spectra for a dimer of Ag@Si NPs under different polarization directions. The polarization directions used in the calculation are shown in the insets, which also include a SEM image of a NP dimer. The asterisk, the five-pointed star and the circles represent the cavity modes, the particle mode and the hybridized modes, respectively. (b) Cross-sectional EF distributions of a dimer of Ag@Si NPs at different excitation wavelengths for the px mode. The maximum EFs are obtained based on the values of the electric fields on the surface of the NP dimers.
Fig. 5
Fig. 5 (a) Measured scattering spectra using a conventional dark-field setup for NPs on four substrates with different Ag deposition thicknesses DAg: 125 nm, 150 nm, 200 nm, and 225 nm. Asterisks, five-pointed stars and circles represent the cavity modes, the particle modes and the hybridized particle modes, respectively. (b) SEM images of leaning NPs (top view) of substrates with DAg: 125 nm, 150 nm, and 225 nm, where each NP cluster contains several NPs. Insets: cross-sectional view of the NPs before leaning. (c) SERS spectra of 10 mM trans-1,2-bis (4-pyridyl) ethylene in ethanol solution obtained using the NPs of DAg = 225 nm under 780 nm and 532 nm excitations. A 10x objective lens was used to focus and collect the light and the laser power was 0.1 mW.
Fig. 6
Fig. 6 A schematic of the dark-field scattering measurements.
Fig. 7
Fig. 7 (a) Measured scattering spectra using a conventional dark-field setup on an Ag@Si NP substrate and an Ag@Si NP substrate with NPs peeled off. The Ag deposition thickness is DAg = 200 nm. (b) Upper and lower left: Top view SEM images of the two substrates used for the scattering measurements in (a), Upper and lower right: Top view SEM images of the samples used in the SERS measurements in (c). The NPs are leaned during the evaporation of the target molecule solution, as seen in the upper right image. (c) SERS spectra of 10mM BPE in ethanol obtained using the substrates shown in (b) under 780 nm excitation. A 10x lens is used to focus and collect the light and the laser power is 0.1 mW.
Fig. 8
Fig. 8 (a) Calculated scattering spectra for a dimer of standard Ag@Si NPs without Si cavities (the Si inside the Ag caps are replaced by Ag) under different polarization directions. The polarization directions used in the calculation are shown in the insets. Insets: electric field enhancement maps plotted for the strongest resonance peaks under different polarization directions. (b) Same as (a), but for the case that the NPs contain Si cavities inside their Ag caps.
Fig. 9
Fig. 9 Cross-sectional SEM images of the NP substrates with different Ag deposition thicknesses DAg = 125 nm, 150 nm, 200 nm and 225 nm. Si pillars are covered by Ag, and the Si substrate is covered by an Ag film with holes near the Si pillars. For all the samples, Si pillars are made by the same etching recipe described in the appendix, section 1 with the same etching time of 4 minutes. All samples are tilted by 5° during the SEM measurements.
Fig. 10
Fig. 10 Mapped SERS spectra of 10 mM BPE in ethanol solution obtained using the NP sample of DAg = 225 nm under a 780 nm excitation. (a) 2-D view. (b) 3-D view. The mapping distance was 1 inch. The step size was 50 um. A 10x objective lens was used to focus and collect the light and the laser power was 0.1 mW. The diameter of the laser spot was 3.1 um. Droplets of BPE were deposited on the NPs and left for drying during which the NPs lean together, forming clusters. The standard deviation for the 1641 cm−1 BPE Raman peak is 5.2% of the average signal intensity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ sca = 1 I 0 n S sc dS

Metrics