Abstract

We present a physical model for recently demonstrated high indium content self-assembled In0.4Ga0.6N/GaN quantum dot (QD)-based ridge-waveguide lasers emitting at red wavelengths. The strain distribution in the QD is calculated using linear elastic theory with the application of shrink-fit boundary condition at the InGaN/GaN material interface, and the electronic states are evaluated using a single-band effective mass Hamiltonian. A Schrödinger-Poisson self-consistent solver is used to describe the effect of charge screening under current injection. Our theoretical result shows a good match to the measured Hakki-Paoli gain spectrum. Combining the calculated gain spectrum and cavity properties, we have developed a device-level simulation to successfully explain the electrical and optical characteristics of this specific laser. Possible solutions to improving the device performance have been explored.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detailed model for the In0.18Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission

Guan-Lin Su, Thomas Frost, Pallab Bhattacharya, John M. Dallesasse, and Shun Lien Chuang
Opt. Express 22(19) 22716-22729 (2014)

Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode

Chih-Yen Chen, Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen, Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen, Yu-Feng Yao, Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu
Opt. Express 20(10) 11321-11335 (2012)

Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs

Fan Zhang, Jie Liu, Guanjun You, Chunfeng Zhang, Suzanne E. Mohney, Min Joo Park, Joon Seop Kwak, Yongqiang Wang, Daniel D. Koleske, and Jian Xu
Opt. Express 20(S2) A333-A339 (2012)

References

  • View by:
  • |
  • |
  • |

  1. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,”J. Appl. Phys. 94,3675–3696 (2003).
    [Crossref]
  2. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
    [Crossref]
  3. S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
    [Crossref]
  4. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
    [Crossref]
  5. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
    [Crossref]
  6. K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
    [Crossref]
  7. Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
    [Crossref]
  8. H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,”J. Opt. Soc. Am. B 27,B45–B49 (2010).
    [Crossref]
  9. M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
    [Crossref]
  10. M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
    [Crossref]
  11. Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,”IEEE J. Sel. Top. Quantum Electron. 8,823–832 (2002).
    [Crossref]
  12. N. Grandjean and M. Ilegems, “Visible InGaN/GaN quantum-dot materials and devices,”Proc. IEEE. 95,1853–1865 (2007).
    [Crossref]
  13. A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
    [Crossref]
  14. S. Schulz and E. P. O’Reilly, “Theory of reduced built-in polarization field in nitride-based quantum dots,”Phys. Rev. B 82,033411 (2010).
    [Crossref]
  15. A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
    [Crossref]
  16. T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
    [Crossref]
  17. K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
    [Crossref]
  18. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
    [Crossref]
  19. K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
    [Crossref]
  20. M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
    [Crossref]
  21. Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
    [Crossref]
  22. S.-H. Park and W.-P. Hong, “Polarization potentials in InGaN/GaN semiconductor quantum dots,”J. Korean Phys. Soc. 57,1308–1311 (2010).
    [Crossref]
  23. A. D. Andreev and E. P. O’Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,”Phys. Rev. B 62,15851–15870 (2000).
    [Crossref]
  24. V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
    [Crossref]
  25. S. L. Chuang, Physics of Photonic Devices, 2(Wiley,2009).
  26. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
    [Crossref]
  27. G.-L. Su, T. Frost, P. Bhattacharya, J. M. Dallesasse, and S. L. Chuang, “Detailed model for the In0.18 Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission,”Opt. Express 22,22716–22729 (2014).
    [Crossref] [PubMed]
  28. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures(Wiley,1999).
  29. M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
    [Crossref]
  30. R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN,”J. Mater. Res. 15,40–44 (2000).
    [Crossref]
  31. K. Wang and R. R. Reeber, “Thermal expansion and elastic properties of InN,”Appl. Phys. Lett. 79,1602–1604 (2001).
    [Crossref]
  32. N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
    [Crossref]
  33. R. Calarco, “InN Nanowires: Growth and optoelectronic properties,”Materials 5,2137–2150 (2012).
    [Crossref]
  34. H. Morkoç, Handbook of Nitride Semiconductors and Devices, GaN-based Optical and Electronic Devices Vol. 1: Materials Properties, Physics and Growth.*(Wiley-VCH,2008).
  35. C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,”Phys. Rev. B 57,7190–7195 (1998).
    [Crossref]
  36. T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
    [Crossref]
  37. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,”Phys. Rev. B 54,2491–2504 (1996).
    [Crossref]
  38. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,”Physica 34,149–154 (1967).
    [Crossref]
  39. C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
    [Crossref]
  40. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
    [Crossref]
  41. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
    [Crossref]
  42. M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
    [Crossref]
  43. O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,”Appl. Phys. Lett. 80,2758–2760 (2002).
    [Crossref]
  44. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
    [Crossref]
  45. M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
    [Crossref]
  46. J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p- doped quantum-dot lasers,”IEEE J. Quantum Electron. 42,942–952 (2006).
    [Crossref]
  47. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
    [Crossref]
  48. T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
    [Crossref]
  49. J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,”Inst. Elec. Eng. Proc. Optoelectron. 149,145–151 (2002).
    [Crossref]

2014 (1)

2013 (3)

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
[Crossref]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

2012 (4)

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
[Crossref]

R. Calarco, “InN Nanowires: Growth and optoelectronic properties,”Materials 5,2137–2150 (2012).
[Crossref]

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

2011 (1)

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

2010 (4)

M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
[Crossref]

S. Schulz and E. P. O’Reilly, “Theory of reduced built-in polarization field in nitride-based quantum dots,”Phys. Rev. B 82,033411 (2010).
[Crossref]

S.-H. Park and W.-P. Hong, “Polarization potentials in InGaN/GaN semiconductor quantum dots,”J. Korean Phys. Soc. 57,1308–1311 (2010).
[Crossref]

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,”J. Opt. Soc. Am. B 27,B45–B49 (2010).
[Crossref]

2009 (2)

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

2008 (1)

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

2007 (2)

N. Grandjean and M. Ilegems, “Visible InGaN/GaN quantum-dot materials and devices,”Proc. IEEE. 95,1853–1865 (2007).
[Crossref]

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

2006 (5)

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
[Crossref]

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p- doped quantum-dot lasers,”IEEE J. Quantum Electron. 42,942–952 (2006).
[Crossref]

2005 (1)

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

2003 (3)

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,”J. Appl. Phys. 94,3675–3696 (2003).
[Crossref]

2002 (3)

J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,”Inst. Elec. Eng. Proc. Optoelectron. 149,145–151 (2002).
[Crossref]

Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,”IEEE J. Sel. Top. Quantum Electron. 8,823–832 (2002).
[Crossref]

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,”Appl. Phys. Lett. 80,2758–2760 (2002).
[Crossref]

2001 (2)

K. Wang and R. R. Reeber, “Thermal expansion and elastic properties of InN,”Appl. Phys. Lett. 79,1602–1604 (2001).
[Crossref]

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

2000 (4)

R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN,”J. Mater. Res. 15,40–44 (2000).
[Crossref]

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

A. D. Andreev and E. P. O’Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,”Phys. Rev. B 62,15851–15870 (2000).
[Crossref]

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

1999 (4)

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
[Crossref]

K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
[Crossref]

1998 (2)

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,”Phys. Rev. B 57,7190–7195 (1998).
[Crossref]

1996 (2)

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,”Phys. Rev. B 54,2491–2504 (1996).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

1994 (1)

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,”Physica 34,149–154 (1967).
[Crossref]

Adachi, M.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Adelmann, C.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Akiyama, T.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Albert, S.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Allan, G.

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

Andreev, A. D.

A. D. Andreev and E. P. O’Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,”Phys. Rev. B 62,15851–15870 (2000).
[Crossref]

Arakawa, Y.

T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,”IEEE J. Sel. Top. Quantum Electron. 8,823–832 (2002).
[Crossref]

K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
[Crossref]

Banerjee, A.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
[Crossref]

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
[Crossref]

Bengoechea-Encabo, A.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Bhattacharya, P.

G.-L. Su, T. Frost, P. Bhattacharya, J. M. Dallesasse, and S. L. Chuang, “Detailed model for the In0.18 Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission,”Opt. Express 22,22716–22729 (2014).
[Crossref] [PubMed]

A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
[Crossref]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
[Crossref]

T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
[Crossref]

Bimberg, D.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
[Crossref]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
[Crossref]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures(Wiley,1999).

Calarco, R.

R. Calarco, “InN Nanowires: Growth and optoelectronic properties,”Materials 5,2137–2150 (2012).
[Crossref]

Calleja, E.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Chakraborty, A.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Chang, C. S.

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,”Phys. Rev. B 54,2491–2504 (1996).
[Crossref]

Chen, C.-H.

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

Chocho, K.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

Chuang, S. L.

G.-L. Su, T. Frost, P. Bhattacharya, J. M. Dallesasse, and S. L. Chuang, “Detailed model for the In0.18 Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission,”Opt. Express 22,22716–22729 (2014).
[Crossref] [PubMed]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p- doped quantum-dot lasers,”IEEE J. Quantum Electron. 42,942–952 (2006).
[Crossref]

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,”Phys. Rev. B 54,2491–2504 (1996).
[Crossref]

S. L. Chuang, Physics of Photonic Devices, 2(Wiley,2009).

Dallesasse, J. M.

Daudin, B.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Delerue, C.

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

DenBaars, S. P.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,”J. Opt. Soc. Am. B 27,B45–B49 (2010).
[Crossref]

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,”Appl. Phys. Lett. 80,2758–2760 (2002).
[Crossref]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Engl, K.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Enya, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Farrell, R. M.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Feicht, G.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Feuillet, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Figge, S.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Fischer, H.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Fishman, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Forchel, A.

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

Frost, T.

G.-L. Su, T. Frost, P. Bhattacharya, J. M. Dallesasse, and S. L. Chuang, “Detailed model for the In0.18 Ga0.82N/GaN self-assembled quantum dot active material for λ = 420 nm emission,”Opt. Express 22,22716–22729 (2014).
[Crossref] [PubMed]

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
[Crossref]

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
[Crossref]

Fujito, K.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Furitsch, M.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Fuutagawa, N.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Grandjean, N.

N. Grandjean and M. Ilegems, “Visible InGaN/GaN quantum-dot materials and devices,”Proc. IEEE. 95,1853–1865 (2007).
[Crossref]

Grundmann, M.

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
[Crossref]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures(Wiley,1999).

Grzegory, I.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Guo, W.

M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
[Crossref]

Gutowski, J.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Gwo, S.

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

Haeger, D. A.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Hamaguchi, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Hardy, M. T.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Härle, V.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Hinckley, J. M.

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

Hirao, M.

N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
[Crossref]

Hommel, D.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Hong, W.-P.

S.-H. Park and W.-P. Hong, “Polarization potentials in InGaN/GaN semiconductor quantum dots,”J. Korean Phys. Soc. 57,1308–1311 (2010).
[Crossref]

Hsu, P. S.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Huang, C.-Y.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Huang, H.-H.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

Ikeda, M.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Ikegami, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Ilegems, M.

N. Grandjean and M. Ilegems, “Visible InGaN/GaN quantum-dot materials and devices,”Proc. IEEE. 95,1853–1865 (2007).
[Crossref]

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Jun, J.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Kako, S.

T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
[Crossref]

Katayama, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Kelchner, K. M.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Keller, S.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Kim, J.

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p- doped quantum-dot lasers,”IEEE J. Quantum Electron. 42,942–952 (2006).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Kong, X.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Kozaki, T.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

Kubota, M.

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

Kumano, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Kuo, C.-T.

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

Kyono, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Laino, V.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Leber, A.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Ledentsov, N. N.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures(Wiley,1999).

Lee, C.-S.

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

Lee, H.-M.

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

Lell, A.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Leszczynski, M.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Lin, Y.-D.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Lin, Y.-Y.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

Luisier, M.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,”J. Appl. Phys. 94,3675–3696 (2003).
[Crossref]

Michler, P.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Morkoç, H.

H. Morkoç, Handbook of Nitride Semiconductors and Devices, GaN-based Optical and Electronic Devices Vol. 1: Materials Properties, Physics and Growth.*(Wiley-VCH,2008).

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

Mukai, T.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
[Crossref]

Nagahama, S.-I.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Naganuma, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Nakajima, H.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Nakamura, N.

N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
[Crossref]

Nakamura, S.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,”J. Opt. Soc. Am. B 27,B45–B49 (2010).
[Crossref]

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,”Inst. Elec. Eng. Proc. Optoelectron. 149,145–151 (2002).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Nakamura, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Nakaoka, T.

T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
[Crossref]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

O’Reilly, E. P.

S. Schulz and E. P. O’Reilly, “Theory of reduced built-in polarization field in nitride-based quantum dots,”Phys. Rev. B 82,033411 (2010).
[Crossref]

A. D. Andreev and E. P. O’Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,”Phys. Rev. B 62,15851–15870 (2000).
[Crossref]

Ogi, H.

N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
[Crossref]

Ohta, H.

H. Ohta, S. P. DenBaars, and S. Nakamura, “Future of group-III nitride semiconductor green laser diodes,”J. Opt. Soc. Am. B 27,B45–B49 (2010).
[Crossref]

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

Okamoto, K.

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

Park, S.-H.

S.-H. Park and W.-P. Hong, “Polarization potentials in InGaN/GaN semiconductor quantum dots,”J. Korean Phys. Soc. 57,1308–1311 (2010).
[Crossref]

Pelekanos, N. T.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Perlin, P.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Piprek, J.

J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,”Inst. Elec. Eng. Proc. Optoelectron. 149,145–151 (2002).
[Crossref]

Porowski, S.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Priester, C.

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

Pryor, C.

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,”Phys. Rev. B 57,7190–7195 (1998).
[Crossref]

Ranjan, V.

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

Reeber, R. R.

K. Wang and R. R. Reeber, “Thermal expansion and elastic properties of InN,”Appl. Phys. Lett. 79,1602–1604 (2001).
[Crossref]

R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN,”J. Mater. Res. 15,40–44 (2000).
[Crossref]

Rumbolz, C.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Saga, N.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Sanchez-Garcia, M. A.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Sano, M.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

Schliwa, A.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
[Crossref]

Schulz, S.

S. Schulz and E. P. O’Reilly, “Theory of reduced built-in polarization field in nitride-based quantum dots,”Phys. Rev. B 82,033411 (2010).
[Crossref]

Schwarz, U. T.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Selke, H.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,”Appl. Phys. Lett. 80,2758–2760 (2002).
[Crossref]

Simon, J.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

Singh, J.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

Someya, T.

K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
[Crossref]

Speck, J. S.

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Stark, E.

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

Stier, O.

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
[Crossref]

Su, G.-L.

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Sumitomo, T.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Sumiyoshi, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Sun, K.

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

Suski, T.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Tachibana, K.

K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
[Crossref]

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

Takagi, S.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

TakaoSomeya, Y. A.

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

Takiguchi, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Tanaka, T.

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

Tasai, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Teisseyre, H.

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Tokuyama, S.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Trampert, A.

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

Ueno, M.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Umemoto, H.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,”Physica 34,149–154 (1967).
[Crossref]

Vehse, M.

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,”J. Appl. Phys. 94,3675–3696 (2003).
[Crossref]

Wang, K.

K. Wang and R. R. Reeber, “Thermal expansion and elastic properties of InN,”Appl. Phys. Lett. 79,1602–1604 (2001).
[Crossref]

R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN,”J. Mater. Res. 15,40–44 (2000).
[Crossref]

Wegscheider, W.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Werner, R.

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

Winkelnkemper, M.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
[Crossref]

Witzigmann, B.

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

Wu, C.-L.

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

Wu, Y.-R.

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

Yamada, M.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

Yamanaka, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Yanashima, K.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Yoshizumi, Y.

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Zhang, M.

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
[Crossref]

Appl. Phys. Express (2)

S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, and M. Ikeda, “High-power (over 100 mW) green laser diodes on semipolar {2021} GaN substrates operating at wavelengths beyond 530 nm,”Appl. Phys. Express 5,082102 (2012).
[Crossref]

Y.-D. Lin, M. T. Hardy, P. S. Hsu, K. M. Kelchner, C.-Y. Huang, D. A. Haeger, R. M. Farrell, K. Fujito, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue-green InGaN/GaN laser diodes on miscut m-plane GaN substrate,”Appl. Phys. Express 2,082102 (2009).
[Crossref]

Appl. Phys. Lett. (14)

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,”Appl. Phys. Lett. 72,2014–2016 (1998).
[Crossref]

T. Frost, A. Banerjee, and P. Bhattacharya, “Small-signal modulation and differential gain of red-emitting (λ =630nm) InGaN/GaN quantum dot lasers,”Appl. Phys. Lett. 103211111 (2003).
[Crossref]

O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers,”Appl. Phys. Lett. 80,2758–2760 (2002).
[Crossref]

S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,”Appl. Phys. Lett. 102181103 (2013).
[Crossref]

S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 223 K,”Appl. Phys. Lett. 69,3034–3036 (1996).
[Crossref]

M. Zhang, P. Bhattacharya, and W. Guo, “InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop,”Appl. Phys. Lett. 97011103 (2010).
[Crossref]

M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, “A InGaN/GaN quantum dot green (λ = 524nm) laser,”Appl. Phys. Lett. 98221104 (2011).
[Crossref]

A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, “Continuous-wave operation and differential gain of In-GaN/GaN quantum dot ridge waveguide lasers (λ =420nm) on c-plane GaN substrate,”Appl. Phys. Lett. 101041108 (2012).
[Crossref]

K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,”Appl. Phys. Lett. 74,383–385 (1999).
[Crossref]

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,”Appl. Phys. Lett. 76,1570–1572 (2000).
[Crossref]

K. Tachibana, Y. A. TakaoSomeya, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,”Appl. Phys. Lett. 75,2605–2607 (1999).
[Crossref]

K. Wang and R. R. Reeber, “Thermal expansion and elastic properties of InN,”Appl. Phys. Lett. 79,1602–1604 (2001).
[Crossref]

C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, “Cross-sectional scanning photoelectron microscopy and spectroscopy of wurtzite InN/GaN heterojunction: Measurement of “intrinsic” band lineup,”Appl. Phys. Lett. 92162106 (2008).
[Crossref]

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, “Microscopic analysis of optical gain in InGaN/GaN quantum wells,”Appl. Phys. Lett. 88021104 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Frost, A. Banerjee, K. Sun, S. L. Chuang, and P. Bhattacharya, “InGaN/GaN quantum dot red (λ = 630 nm) laser,”IEEE J. Quantum Electron. 49,923–931 (2013).
[Crossref]

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p- doped quantum-dot lasers,”IEEE J. Quantum Electron. 42,942–952 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,”IEEE J. Sel. Top. Quantum Electron. 8,823–832 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, H. Fischer, G. Feicht, W. Wegscheider, C. Rumbolz, A. Lell, and V. Härle, “Analysis of temperature-dependent optical gain in GaN-InGaN quantum-well structures,”IEEE Photon. Technol. Lett. 18,1600–1602 (2006).
[Crossref]

Inst. Elec. Eng. Proc. Optoelectron. (1)

J. Piprek and S. Nakamura, “Physics of high-power InGaN/GaN lasers,”Inst. Elec. Eng. Proc. Optoelectron. 149,145–151 (2002).
[Crossref]

J. Appl. Phys. (5)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,”J. Appl. Phys. 94,3675–3696 (2003).
[Crossref]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-μ m self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,”J. Appl. Phys. 97043523 (2005).
[Crossref]

N. Nakamura, H. Ogi, and M. Hirao, “Elastic, anelastic, and piezoelectric coefficients of GaN,”J. Appl. Phys. 111013509 (2012).
[Crossref]

M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and S. Porowski, “Thermal expansion of gallium nitride,”J. Appl. Phys. 76,4909–4911 (1994).
[Crossref]

Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, and J. Singh, “Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting,”J. Appl. Phys. 105013117 (2009).
[Crossref]

J. Korean Phys. Soc. (1)

S.-H. Park and W.-P. Hong, “Polarization potentials in InGaN/GaN semiconductor quantum dots,”J. Korean Phys. Soc. 57,1308–1311 (2010).
[Crossref]

J. Mater. Res. (1)

R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN,”J. Mater. Res. 15,40–44 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D-Appl. Phys. (1)

A. Banerjee, T. Frost, and P. Bhattacharya, “Nitride-based quantum dot visible lasers,”J. Phys. D-Appl. Phys. 46,264004 (2013).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue laser diodes based on nonpolar m-plane gallium nitride with InGaN waveguiding layers,”Jpn. J. Appl. Phys. 46,L820–L822 (2007).
[Crossref]

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,”Jpn. J. Appl. Phys. 38,3976–3981 (1999).
[Crossref]

Materials (1)

R. Calarco, “InN Nanowires: Growth and optoelectronic properties,”Materials 5,2137–2150 (2012).
[Crossref]

Opt. Express (1)

Phys. Rev. B (8)

M. Sugawara, K. Mukai, Y. Nakata, and H. Ishikawa, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled Inx Ga1−x As/GaAs quantum dot lasers,”Phys. Rev. B 61,7595–7603 (2000).
[Crossref]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory,”Phys. Rev. B 59,5688–5701 (1999).
[Crossref]

C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations,”Phys. Rev. B 57,7190–7195 (1998).
[Crossref]

S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,”Phys. Rev. B 54,2491–2504 (1996).
[Crossref]

S. Schulz and E. P. O’Reilly, “Theory of reduced built-in polarization field in nitride-based quantum dots,”Phys. Rev. B 82,033411 (2010).
[Crossref]

A. D. Andreev and E. P. O’Reilly, “Theory of the electronic structure of GaN/AlN hexagonal quantum dots,”Phys. Rev. B 62,15851–15870 (2000).
[Crossref]

V. Ranjan, G. Allan, C. Priester, and C. Delerue, “Self-consistent calculations of the optical properties of GaN quantum dots,”Phys. Rev. B 68,115305 (2003).
[Crossref]

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in Inx Ga1−x N/GaN quantum dots using an eight-band k·p model,”Phys. Rev. B 74,155322 (2006).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,”Physica 34,149–154 (1967).
[Crossref]

Physica E (1)

T. Nakaoka, S. Kako, and Y. Arakawa, “Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots,”Physica E 32,148–151 (2006).
[Crossref]

Proc. IEEE. (1)

N. Grandjean and M. Ilegems, “Visible InGaN/GaN quantum-dot materials and devices,”Proc. IEEE. 95,1853–1865 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

M. Vehse, P. Michler, J. Gutowski, S. Figge, D. Hommel, H. Selke, S. Keller, and S. P. DenBaars, “Influence of composition and well-width fluctuations on optical gain in (In, Ga)N multiple quantum wells,”Semicond. Sci. Technol. 16,406–412 (2001).
[Crossref]

Other (3)

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures(Wiley,1999).

H. Morkoç, Handbook of Nitride Semiconductors and Devices, GaN-based Optical and Electronic Devices Vol. 1: Materials Properties, Physics and Growth.*(Wiley-VCH,2008).

S. L. Chuang, Physics of Photonic Devices, 2(Wiley,2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Flow chart of our QD-based ridge-waveguide laser model.

Fig. 2
Fig. 2

Epitaxial layer structure (not to scale) of the In0 . 4Ga0 . 6N/GaN QD-based ridge-waveguide laser used in this study (left), together with an illustration of the side and top views of our truncated hexagonal pyramid QD model (right).

Fig. 3
Fig. 3

Spatial distribution of biaxial strain (a) εxx and (b) εzz, and (c) and (d) polarization charge in the QD/matrix structure at different viewing angles. (a) and (c) are plotted in the xy plane and (b) and (d) are plotted in the yz plane. The QD region is specified by dashed black line. The temperature is assumed to be 25 °C.

Fig. 4
Fig. 4

Valance band structures of strained and unstrained In0 . 4Ga0 . 6N in the in-plane and out-of-plane directions. The difference in the curvatures at the zone center leads to different hole effective masses.

Fig. 5
Fig. 5

(a) Band edges before (dashed black) and after (solid red) including screening effect at different viewing angles. The injection level is n2d = 37N2D and T = 120 °C. (b) The wavefunction overlap of the C1-HH1 and C2-HH2 transitions as functions of injection level.

Fig. 6
Fig. 6

Measured (squares) and calculated (solid lines) modal gain spectra of the In-GaN/GaN QD-based ridge-waveguide laser. The active region temperature increases from 65 °C up to around 120 °C at threshold.

Fig. 7
Fig. 7

Power flow profile Pz(x,y) of the fundamental mode together with the combined diode-resistor model.

Fig. 8
Fig. 8

(a) Calculated Pout-I-V curves and the comparison with experimental data of a 5 μm × 1 mm, CW-biased laser at a substrate temperature of 15 °C. (b) Modal gain spectra as functions of active region temperature under an injection level of n2d = 40N2D. An active region as high as 276 °C substantially degrades the peak gains and red shifts the spectra.

Fig. 9
Fig. 9

Simulated injection (black), non-radiative recombination (red) and spontaneous emission (blue) rates, together with stimulated emission (magenta) rate in the device modeled in Fig. 8.

Tables (4)

Tables Icon

Table 1 Heavy and light hole effective masses of strained and unstrained InGaN, in terms of free electron mass m0.

Tables Icon

Table 2 Material parameters for the In0 . 4Ga0 . 6N/GaN self-assembled QD model.

Tables Icon

Table 3 Fitting parameters used in I-V modeling.

Tables Icon

Table 4 Fitting parameters used in Pout-I modeling. Symbol Value

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ε ( 0 ) = s 0 ε x x ( 0 ) + ε y y ( 0 ) + ε z z ( 0 ) 3
a III - N ( T ) = a III - N ( 298 K ) [ 1 + α a ( T 298 ) ]
c III - N ( T ) = c III - N ( 298 K ) [ 1 + α c ( T 298 ) ]
ε i j = QD ε i j ( r ) d 3 r QD volume
h ¯ 2 2 ( m ¯ ¯ 1 : ψ ) + V ( r ) ψ = E ψ
Δ E g ( T ) = Δ E c ( T ) + Δ E v ( T )
Δ E v ( T ) = 900 meV Δ E g ( 298 K ) Δ E g ( T )
E g ( T ) = E g ( 0 ) α T 2 β + T
V strain ( r ) = i v i ε i i ( r )
n 2 d = 2 N 2 D bound G c ( E E i ) f c ( E , T ) d E + L eff E b ρ 3 D ( E E b ) f c ( E , T ) d E
L eff = N 2 D × QD volume
ρ sc . ( r ) = 2 q bound | ψ h , j ( r ) | 2 [ 1 f v ( E h , j , T ) ] 2 q bound | ψ e , i ( r ) | 2 f c ( E e , i , T )
g TE ( h ¯ ω ) = 2 π q 2 N 2 D | i S | p x | X | 2 n r , t ε 0 c 0 ω m 0 2 L D bound P i j ( h ¯ ω )
P i j ( h ¯ ω ) = | I h , j e , i | 2 | w h , j | 2 G c v ( E E h , j e , i ) [ f c ( E e , i , T ) f v ( E h , j , T ) ] L ( E h ¯ ω ) d E
I = V I R S R P + I 0 { exp [ q ( V I R S V d ) n d k B T ] 1 }
d n 2 d d t = η i J q n 2 d τ nr n 2 d τ r g TE ( n 2 d ) v g s 2 d
d s 2 d d t = Γ g TE ( n 2 d ) v g s 2 d s 2 d τ ph + Γ β sp n 2 d τ r
T = T sub + Z th ( I V P out )
J = 1 W L ( I V I R s R P )
1 τ nr = 1 τ 0 exp ( Δ E a k B T )
P out = ( β n 2 d τ r + α m v g Γ s 2 d ) W L h ¯ ω

Metrics